因式分解,在這裡是指多項式因式分解(英語:Polynomial Factorization[註 1]),在數學中一般理解為把一個多項式分解為兩個或多個的因式[註 2]的過程。在這個過後會得出一堆較原式簡單的多項式的積。例如單元多項式可被因式分解為。又如二元多項式因式分解為。如果我們允許多項式係數從整數擴大到複整數,那麼可被因式分解為。通常分解獲得的每個因式要是不可約多項式irreducible)。也就是不能再分解了。

Thumb
一多項式 x2 + cx + d 可因式分解成(x + a)(x + b)。其中:ab = da + b = c 

因式分解定理

數域F上每個次數的多項式都可以分解成數域F上一些不可約多項式的乘積,並是唯一的,即如果有兩個分解式


其中都是數域F上的不可約多項式,那麼必有,而且可以適當排列因式的次序,使得

,其中是一些非零常數

分解方法

公因式分解(抽)

原則:

1、分解必須要徹底(即分解後之因式均不能再做分解)

2、結果最後只留下小括號

3、結果的多項式首項為正。 在一個公式內把其公因子抽出,例子:

    • 其中,是公因子。因此,因式分解後得到的答案是:
    • 其中,是公因子。因此,因式分解後得到的答案是:

公式重組(拼)

透過公式重組,然後再抽出公因數,例子:

添項法(增)

透過添項然後減掉,然後再抽出公因數,例子:

分項法(拆)

透過分裂某項,然後再抽出公因數,例子:

  • 其中,可以被拆成。所以,可以被寫成。因此,
其中,可以被拆成。所以,可以被寫成。因此,

十字交乘法

十字交乘法(cross method),也叫做十字相乘法。它實際上是拆項法的一個變形,只不過用十字形矩陣來表示。

兩個n次方數之和與差

兩個立方數之和

可分解為

兩個立方數之差

可分解為

兩個n次方數之差

兩個奇數次方數之和

一次因式檢驗法

一個整係數的一元多項式,假如它有整係數因式且p,q互質,則以下兩條必成立:(逆敘述並不真)

不過反過來說,即使當都成立時,整係數多項式也不一定是整係數多項式的因式

另外一個看法是:

一個整係數的n次多項式,若是f(x)之因式,且p,q互質,則:(逆敘述並不真)

參見

注釋

延伸閱讀

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.