從計算電偶極子所產生的電場的平均值,可以得到正確答案。設定以原點 為圓心,半徑為 的球體 。電偶極子所產生於這球體的電場,其平均值為:
- 。
注意到球坐標單位向量與直角坐標單位向量之間的關係:
- 、
- 。
將這兩個關係式代入前面積分式,可以得到
|
|
|
|
|
|
|
|
|
|
|
。
|
注意到這積分式的x-分量與y-分量都等於零,只剩下z-分量:
- 。
對於徑向坐標 積分會得到
- !
但對於天頂角 積分則會得到
- !
由此可知,從這運算無法得到 的正確值。這是因為電偶極子的電勢有一個奇點在它所處的位置(原點 ),電場的方程式並不完全正確。必須特別小心地計算,才能得到正確答案。應用向量恆等式 ,則作用於這球體 的電場,其平均值為:
- ;
其中, 是球體 的表面。
將電勢 的方程式代入,注意到 ,則可得到
- ;
其中, 是在源位置 的電荷密度, 是源積分體積,設定與 相同, 是場位置的單位向量,從表面 垂直往外指出。
場位置與源位置之間距離的倒數以球諧函數 作多極展開為
- ;
其中, 與 的球坐標分別為 與 。
單位向量 以球諧函數表示為
- 。
應用球諧函數的正交歸一性
- ,
可以得到 與這球體的電偶極子 之間的關係式:
- 。
也就是說,
- 。
為了滿足這性質,必需對於電偶極子 所產生的電場 ,在其方程式內再添加一個項目:
- 。
這樣,在計算 時,就能夠得到明確無誤的答案。