Loading AI tools
由铁与其他元素结合而成的合金 来自维基百科,自由的百科全书
鋼或稱鋼鐵、鋼材,是一種由鐵與其他元素結合而成的合金,當中最普遍的是碳,亦是現時最受廣泛應用的金屬材料。碳約佔鋼材重量的0.02%至2.0%,視乎鋼材的等級。其他有時會用到的合金元素還包括錳、鉻、釩和鎢[1]。碳與其他元素有硬化劑的作用,能夠防止鐵原子的晶格因原子滑移過其他原子而出現位錯。調整合金元素的量,及其存在於鋼中的形式(溶質元素及參與相),就能夠控制鋼成品的特性,例如硬度、延展性及強度。加了碳的鋼會比純鐵更硬更強,但是這種鋼的延展性會比鐵差。
含碳量高於2.0%的合金叫鑄鐵,因為這種合金的熔點較低,可鑄性強[1]。鋼又跟熟鐵不同,熟鐵可以含有少量的碳,但這些碳雜質都是夾雜在鋼中的殘留熔渣。鋼有兩種跟鑄鐵和熟鐵不同的特性,就是鋼的耐鏽度較高,以及可焊度更佳。
儘管在文藝復興之前很久,人們已經懂得使用各種低效的方法來生產鋼,但是鋼的普及化要等到十七世紀,也就是有了更高效的生產方法之後。自從在十九世紀發明了貝塞麥煉鋼法之後,鋼就成了一種可大量生產的廉價材料。後來煉鋼法經過更多的改進,例如鹼性氧氣煉鋼法,使得鋼的生產價格更低,但同時品質更好。時至今日,鋼已經成為世界上普遍的材質,年生產量達十三億噸。在各種建築、基礎設施、工具、船隻、汽車、機械、電器及武器中,鋼都是一種主要的成份。現代鋼鐵一般用各種標準化團體所制定的不同品質標準來區分。
地球地殼上所有的天然鐵都是以礦石的形式存在,一般為氧化鐵,例如磁鐵礦及赤鐵礦等。要提取鐵,就要把鐵礦中的氧移除,讓氧與其他的化學元素結合,例如碳。這個過程叫熔煉,最早應用於熔點較低的金屬,例如熔點約為250 °C的錫及熔點約為1,100 ℃的銅。而鑄鐵的熔點則為1,375 ℃。這種溫度用於青銅時代就已經有古老的方法就可以達到。由於氧化率在800 ℃以上時就會急劇增加,所以保持冶煉環境低氧是很重要的。跟銅與錫不同的是,液態鐵能夠很容易地溶解碳。熔煉所生成的合金(生鐵)含碳量過高,因此還不能叫作鋼[2]。後續的步驟會把多餘的碳和氧除掉。
很多時候會向鐵/碳化合物加入其他材料,來達至所需的特性。在鋼裏加入鎳和錳會增加鋼的強度,並使沃斯田鐵的化學性質更加穩定,加入鉻會使硬度及熔點上昇,加入釩也可以使硬度上昇,但同時更會減輕金屬疲勞所帶來的效應。為了防止腐蝕,最少會要加入11%的鉻,這樣表面就會生成一層硬的氧化物;這種合金叫不鏽鋼。鎢能干預雪明碳鐵的生成,使麻田散鐵得以在較低的淬火率下生成,這樣的成品叫高速鋼。另一方面,硫、氮與磷會使鋼變得更脆弱,因此必須從礦石中除掉這些普遍存在的元素[3]。
鋼的密度會隨合金的成份而改變,但一般介於7,750至8,050 kg/m3[4]。
即使在不同鋼裏面的濃度差異是如此的小,碳-鋼混合物還是可以形成一些不同的結構,這些結構各自有着很不一樣的特性。要煉出高品質的鋼,是必須明白這些特性的。在室溫下,鐵最穩定的形式是體心立方晶格結構的α-鐵素體。這是一種頗軟的金屬材料,而且只能溶解很小量的碳,於723 ℃時上限為0.021 wt%,而0 ℃時則為0.005%。在煉的溫度下,若鋼的含碳量超過0.021%,它就會轉化為面心立方晶格的結構,叫沃斯田鐵,或γ-鐵。它亦是一種軟的金屬材料,但是它能溶解相當多的碳,於1,148 ℃達2.1%[5],反映出鋼的含碳量上限[6]。
當鋼的含碳量少於0.8%時(叫亞共析鋼),混合物會從沃斯田鐵相冷卻下來,嘗試回到鐵素體相,並因此會有多餘的碳。其中一種能讓碳脫離沃斯田鐵的方法是,等滲碳體因沉澱離開混合物,這樣剩下的鐵純度若足夠地高,就能形成鐵素體,得出滲碳體-鐵素體混合物。滲碳體是一種既硬且脆的金屬互化物,化學式為Fe3C。當鋼的含碳量為0.8%時(共析鋼),冷卻的結構會形成波來鐵,名稱來自於與珍珠母類似的光澤。當鋼的含碳量超過0.8%(過共析鋼),冷卻的結構則會形成珠光體和滲碳體[7]。
也許最重要的同質多形體是麻田散鐵,因為它是一種介穩相,所以比其他鋼相的強度要高很多。當鋼處於沃斯田鐵相時,再受到淬火後會形成馬氏體,這是因為當晶格架構從面心立方轉成體心立方時,原子需要被「凍結」在原位的緣故。視乎沃斯田鐵相的碳含量,會形成不同的結構。當含碳量低於0.2%時,會形成體心立方結構的α-鐵素體,而當含碳量較高時則會形成體心四方結構。從沃斯田鐵到馬氏體的變換,並不需要活化能。而且沒有成份改變,因此原子一般保留變換前的鄰居[8]。
馬氏體的密度比沃斯田鐵低,因此兩者在互相變換時體積也會改變。所以在沃斯田鐵轉成馬氏體時,會發生膨脹。這種膨脹所做成的內部應力,一般會對馬氏體的晶體進行壓縮,同時對餘下的鐵素體施行張力,並且還有相當量的剪應力作用於這兩種成份上。如果淬火做得不完全的話,內部應力可能把會在冷卻時導致斷裂。在最低限度上,還會導致內部加工硬化及其他微觀上的瑕疵。用水作冷卻處理時,很多時候會形成斷裂,儘管裂痕不一定可見[9]。
鋼有多種不同的熱處理過程。最常見的是退火及調質(淬火後回火)。退火是把鋼高溫加熱到軟化的過程。這個過程發生時會經過三個相:回復、再結晶及晶粒成長。鋼退火所需的溫度取決於退火的類型,以及合金的成份[10]。
調質(淬火後回火)在一開始時先把鋼加熱至沃斯田鐵相,再用水或油進行冷卻。急速的冷卻導致馬氏體結構既硬且脆[8]。此時再把鋼作回火處理,其實就是一種更專門的退火形式。這樣的退火(回火)過程會把一部份的馬氏體轉化成滲碳體,或球化波來鐵,轉化會減少鋼內部的應力和瑕疵,因此鋼最後會變得更有韌性,更不易斷[9]。
當鐵礦準備被商業過程提煉前,鐵礦的含碳量仍然是太高。要得到鋼,必須把礦石熔掉,並重新處理來減低含碳量至適當水平,而在這個時候還可以加入其他元素。然後把液體用連續鑄造法鑄成厚鋼板,又或是用鑄造法鑄成鋼錠。大約96%的鋼是用連續鑄造法處理,而只有4%的鋼被鑄成鋼錠[11]。之後把鋼放進均熱爐裏加熱,再用熱軋軋成厚鋼板、鋼塊或鋼坯。厚鋼板會被熱或冷軋成鋼片或薄鋼板。鋼坯會被熱或冷軋成鋼條、鋼棒及鋼線。鋼塊則會被熱或冷軋成結構鋼,如H型鋼及鐵路軌道。在現代鑄造廠中,這些過程一般會以裝配線的形式運作,也就是鑄造廠輸入礦石,輸出鋼成品[12]。有時鋼在軋完以後會再接受一次熱處理,來增加強度,然而會這樣做的廠商是相對地少[13]。
自古以來,人們就已經知道鋼的存在,當時的熔煉可能是用鍊鋼爐,或其他熔鐵設施,而裏面燒的是碳[14]。
已知最早的鋼成品是一塊鐵器,出土於土耳其安那托利亞的卡曼-卡萊赫於克遺跡,約有四千年的歷史[15]。其他古代鋼來自東非,可追溯至公元前1400年[16]。在公元前4世紀,伊比利亞半島出產了像利刃彎刀這種鋼兵器,而古羅馬軍隊則在用諾里庫姆出產的鋼兵器[17]。在戰國時代(公元前403-221年)中國用淬火來硬化鋼材[18],而到了漢朝(公元前202-公元220年),採用熟鐵和鑄鐵熔在一起煉鋼,以此技術在公元一世紀做出了中碳鋼[19][20]。東非的哈亞人在接近2,000年前發明了一種高熱高爐,使得他們在那個時候能用1,802 ℃的高溫來鍛造碳鋼[21]。
高碳鋼最早的生產證據出現於印度次大陸,出土地為斯里蘭卡的莎瑪納拉威瓦。[22]印度在公元前300年就開始生產烏茲鋼[23]。自從烏茲鋼的鍛造法在公元五世紀從印度傳入了中國,中國人除了使用他們本身原創的鍛鋼法,也採用了烏茲鋼的生產法[24],做出來的鋼叫做鑌鐵。在斯里蘭卡,這種早期的煉鋼法用到一種特殊的送風式爐,它用的風是季風,能夠生產出高碳鋼[25]。烏茲鋼也叫大馬士革鋼,以其耐用性,與所製刀刃不易損而聞名。最早是由多種不同的材料製成,當中包括各種稀有元素。它本質上是一種以鐵為主的複雜合金。最近研究指出,它的內部結構中含有碳納米管,所以這可能就是它那有名特性的來源,介於當時的鑄造技術有限,做出這種結構大概是出於偶然,而不是有意[26]。送風式爐用的是天然風,爐內放置含鐵的土壤,並用木材加熱。古代的僧伽羅人成功從每兩噸的土壤中提煉出一整噸的鋼材,在當時來說可謂成就卓越。考古學家在莎瑪納拉威瓦找到了這樣的一個爐,並成功用古人的方法來生產鋼鐵[25][27]。
把純鐵與碳(一般是木炭)放在一起於坩堝內慢慢加熱,冷卻後就能得到坩堝鋼,在公元九至十世紀前,梅爾夫這個地方就已經在生產坩堝鋼。在十一世紀,有證據指出宋朝的中國共有兩種煉鋼法:一種把小量熟鐵跟鑄鐵熔在一起,用於生產不均勻的次等鋼;另一種是現代貝塞麥煉鋼法的前身,透過在冷爐風下的重覆鍛造,達到不完全除碳的效果[28]。
從十七世紀起,歐洲式煉鋼的第一步就是用高爐把鐵礦煉成生鐵[29]。最早期爐子裏燒的是木炭,現代方法則改為燒焦炭,事實證明後者要比前者便宜得多[30][31][32]。
在這些過程中,生鐵需要在精煉廠中接受精煉,以生產出鐵條(熟鐵),之後再拿鐵條去煉鋼[29]。
用滲碳法煉鋼的程序被記載於一篇在1574年布拉格出版的論文中,並且早在1601年紐倫堡人就在用這方法煉鋼。一本在1589年那不勒斯出版的書中有提及相近的方法,用於製作經表面硬化的盔甲與銼。這套程序在1614年被引入英格蘭,而巴茲爾·布魯克爵士於1610年代在什羅普郡的柯爾布魯德爾生產這種鋼[33]。這套方法的原材料是熟鐵造的鐵條。在十七世紀期間,最好的熟鐵是瑞典斯德哥爾摩以北所產的厄勒格倫德鐵。到了十九世紀這種鐵還是最常用的原料,也就是在用這套方法的期間,幾乎用的都是這種鐵[34][35]。
在坩堝裏燒出來的鋼叫坩堝鋼,它是沒有經過鍛造的,因此成品會比較均勻。以前大部份的爐都不能達到能熔掉鋼的溫度。現代的坩堝鋼工業最早是由本傑明·漢特斯曼於1740年代的發明所衍生的。一般會把滲碳鋼(以滲碳法製成的鋼)放在坩堝或熔爐裏面熔掉,然後鑄成鋼錠[35][36]。
煉鋼的現代史從1858年[37][38] 引進亨利·貝塞麥的貝塞麥煉鋼法開始。他的原料是生鐵[39]。他的煉鋼法讓低成本大量生產變得可行,因此從前用熟鐵的地方現在都用軟鋼[40]。吉爾克萊斯特-托馬斯煉鋼法(或基本貝塞麥煉鋼法)是貝塞麥煉鋼法的改良版,就是在轉爐內部鋪上一層鹽基材料,以達到除磷的效果。煉鋼的另一項改良就是西門子-馬丁煉鋼法,能夠補足貝塞麥煉鋼法的缺點[35]。
在使用鹼性氧氣煉鋼的林茨-多納維茨煉鋼法出現後,上述的煉鋼法都被淘汰了,鹼性氧氣煉鋼法及其他氧氣煉鋼法是在1950年代被開發出來的。鹼性氧氣煉鋼法比其他方法優勝是因為,被泵到表面上的氧氣會限制雜質,而從前雜質能夠從所用的空氣中進入[41]。時至今日,用電弧爐來重新處理廢金屬是很常見的,處理後能生產出新的鋼。它也可用於把生鐵轉化成鋼,但需要使用大量電力(每噸需要約440 kWh),所以一般只能在有大量廉價電力供應的情況下才有經濟效益[42]。
現在我們都把鋼和鐵工業合稱為「鋼鐵工業」,好像它們本身就是一個個體,但是在歷史上它們是不同的產品。鋼工業通常被用作經濟進度的指標,因為鋼在基礎設施與整體經濟發展中有着舉足輕重的角色[43]。
在1980年,美國共有500,000名鋼鐵工人。到2000年,數量減至224,000人[44]。
中國與印度經濟的急劇增長,導致近年對鋼鐵的需求量也跟着大量增加。在2000年至2005年之間,世界鋼鐵的需求量共增加了6%。自2000年起,好幾家印度[45]及中國鋼鐵商成功突圍而出,晉身世界一流,例如塔塔鋼鐵(於2007年收購柯以斯集團)、上海寶鋼集團及江蘇沙鋼集團。然而,安賽樂米塔爾仍然是世界最大的鋼鐵生產商。
英國地質調查局指出,在2005年中國是世界第一名的鋼鐵生產國,佔全球總產量的三分之一,而第二、三、四名分別為日本、俄羅斯及美國[46]。
倫敦金屬交易所於2008年開始將鋼材列入交易範圍。在2008年底,鋼鐵工業面對了一場激烈的衰退,因此做了不少削減[47]。
為了滿足各樣不同的用途,現代鋼材有着各種不同的合金金屬組合[3]。碳鋼的構成很簡單,只有碳和鐵兩種元素,佔鋼材生產量的90% [1]。高強度低合金鋼含有小量其他元素(正常重量最多佔鋼的2%),一般為1.5%錳,用於增加鋼的強度,這樣價格會高一點[48]。低合金鋼是與其他元素合成的鋼,通常為鉬、鎂、鉻或鎳,總加入量上限為鋼重量的10%,用於加強厚部份的可硬化性[1]。不鏽鋼為了抵抗腐蝕(生鏽),需要加入最少11%的鉻,通常還會再加鎳。一些不鏽鋼,如鐵素體不鏽鋼帶磁性,而沃斯田鐵不鏽鋼則不帶磁性[49]。
其他更現代的鋼材還包括工具鋼,合金元素為大量的鎢與鈷或其他元素,它們能夠使固體溶液強化的效果最大化。同時還使析出硬化變得可行,並因此加強了鋼的耐熱性[1]。工具鋼一般用於製作斧頭、鑽頭及其他需要又鋒利又耐久刃面的設備。其他特殊用的鋼還包括耐候鋼,例如高登鋼,在風化作用下會生成一層穩定的氧化表層,因而可以在不需塗漆就能在戶外使用[50]。
還有其他高強度鋼,例如雙相鋼,它是用熱處理來使其鋼體同時含有鐵素體及馬氏體微結構,因此強度較一般鋼高[51]。相變誘發塑性鋼也就是TRIP鋼,是一種含有殘餘奧氏體的低碳、低合金高強度鋼。TRIP效應是指殘餘奧氏體向馬氏體轉變使得強度和塑性同時提高的效應。TRIP鋼的典型顯微組織主要由鐵素體、貝氏體、殘餘奧氏體組成,可能還有少量馬氏體。碳是奧氏體的穩定化學元素,碳含量太低,則不會產生TRIP效應,但是碳含量過高,會造成焊接效能下降。矽是鐵素體元素,不僅可以增加參與奧氏體穩定性,還能夠抑制冷卻過程中滲碳體的形成。更高的矽和碳含量會使TRIP鋼中的殘餘奧氏體體積分數提高。[52]。麻時效鋼是鐵、鎳及其他元素的合金,但與其他鋼不同的是,它基本上不含碳,所以就生成了一種強度非常高,但同時帶有延展性的金屬[53]。雙晶誘發塑性鋼用一種特殊的應變,來增加加工硬化對合金的有效度[54]。埃格林鋼用了超過十二種的元素,以不同量的組合來做出一種可用於碉堡破壞彈等武器的合金,而且成本相對地低。哈特菲鋼(以羅伯特·哈特菲爵士命名)含有12-14%的錳,能在磨損時生成一層極硬的表層,防止磨耗。應用例子包括坦克履帶、推土機上的推土刀邊緣,以及生命之鉗的切割刃[55]。
大部份常用鋼鐵合金,一般用各種標準化團體所制定的不同品質標準來區分。例如,汽車工程師協會有一系列的等級,區分很多種不同的鋼鐵[56]。美國材料和試驗協會有另外一套標準,將合金進行區分,例如美國最常用的結構鋼A36鋼[57]。
將鋼熱浸於鋅中或在鋼上電鍍上一層鋅,這樣能保護表層防止生鏽,雖然這種鍍鋅鋼不是一種合金,但是它也是一種常用的鋼[58]。
鐵和鋼都被廣泛地應用於建造道路、鐵路、其他基礎設施、設備與建築。大部份的現代架構,諸如體育場與摩天大樓、橋樑與機場,都是用鋼製的支架來支撐。就算是用混凝土的結構,也要用鋼筋來加固。此外,鋼在家用電器與汽車製造都有廣泛應用。儘管用鋁的汽車主體正在增加,但是它們的主要材料仍然是鋼。鋼也被用於各種建造用的材料,例如螺栓、釘子及螺絲[59]。其他常見應用還包括造船、輸送管道、採礦、離岸建設、航天、白色家電(如洗衣機)、工程作業車輛(如推土機)、辦公室家具、鋼棉、工具及個人用背心式盔甲或載具用裝甲(當中最有名的是軋壓均質裝甲)。鋼還是不少現代雕塑家喜用的金屬素材。
在引進貝塞麥煉鋼法及其他現代方法以前,鋼是價值不菲的,所以只在沒有更便宜替代品的情況下使用,尤其是各種需要又硬又鋒利刀刃的切割工具,例如刀子、刮鬍刀、劍等。鋼也被用於製作彈簧,包括鐘錶裏的彈簧[35]。自從生產方法改進,變得更迅速更節約後,要得到鋼就比較容易,價格也因而降下來,二十世紀後期塑膠的出現,使得鋼的一些應用被取代,因為塑膠成本更低,而且重量更輕[60]。
由於核試的關係,所以在第二次世界大戰之後生產的鋼,會受到放射性同位素的污染。於是1945年之前生產的鋼,被稱為低背景鋼,這種鋼材被用於對輻射敏感的特定用途,例如蓋革計數器及輻射屏蔽。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.