拓撲學中,若爾當曲線(英語:Jordan curve)是平面上的非自交環路(又稱為簡單閉曲線,英語:simple closed curve)。若爾當曲線定理(英語:Jordan curve theorem)說明每一條若爾當曲線都把平面分成一個「內部」區域和一個「外部」區域,且任何從一個區域到另一個區域的道路都必然在某處與環路相交。它由奧斯瓦爾德·維布倫在1905年證明。

Thumb
若爾當曲線定理的說明。若爾當曲線(黑色)把平面分成一個「內部」區域(淺藍色)和一個「外部」區域(粉紅色)。

定理和證明

準確的數學表述如下:

c為平面R2上的一條若爾當曲線。那麼c補集由兩個不同的連通分支組成。其中一個分支是有界的(內部),另外一個是無界的(外部)。c的像就是任何一個分支的邊界。

若爾當曲線定理表面上是明顯的,但要證明它十分困難。對於較簡單的閉曲線,例如多邊形,是比較容易證明的,但要把它推廣到所有種類的曲線,包括無處可微的曲線如科赫曲線,便十分困難。該定理對於球面上的若爾當曲線也成立,但對於環面上的若爾當曲線不成立。

第一個發現該定理的是伯納德·波爾查諾,他觀察到這不是一個自明的定理,而需要證明。第一個給出證明的是卡米爾·若爾當,該定理就是以它命名的(後來發現他的證明仍有漏洞)。過了超過半個世紀,奧斯瓦爾德·維布倫最終在1905年給出了一個滿意和嚴格的證明。後來又發現了一些其它的證明,有些較為簡單(但相對來說仍然複雜)。

推廣

若爾當曲線定理可以推廣到更高的維數:

X為從球面SnRn+1的一個連續的單射。那麼X的像的補集由兩個不同的連通分支組成。其中一個分支是有界的(內部),另外一個是無界的(外部)。X的像是它們的公共邊界。

若爾當曲線定理還有另外一種推廣,它說明平面上的任何若爾當曲線,視為從圓S1到平面R2的映射,都可以延伸到平面的一個同胚。這個表述比若爾當曲線定理更強。這個推廣在更高的維數不成立,亞歷山大角球英語Alexander horned sphere就是一個著名的反例。亞歷山大角球的補集的無界分支不是單連通的,因此亞歷山大角球的映射不能延伸到整個R3

若爾當曲線定理的另外一個推廣說明,如果MRn+1的任何緊緻、連通、無界的n維子流形,那麼M便把Rn+1分成兩個區域:一個是緊的,另外一個不是緊的。

參見

參考文獻

  • Oswald Veblen, Theory on plane curves in non-metrical analysis situs, Transactions of the American Mathematical Society 6 (1905), pp. 83–98.
  • Ryuji Maehara, The Jordan curve theorem via the Brouwer fixed point theorem, American Mathematical Monthly 91 (1984), no. 10, pp. 641–643.

外部連結

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.