求和符號(英語:summation;符號:,讀作:sigma),是歐拉於1755年首先使用的一個數學符號。這個符號是源自於希臘文σογμαρω(增加)的字頭,Σ正是σ的大寫。
求和指的是將給定的數值相加的過程,又稱為加總。求和符號常用來簡化有多個數值相加的數學表達式。
假設有個數值,則這個數值的總和可表示為。
用等式來呈現的話就是。
舉例來說,若有4個數值:,則這4個數值的總和為:
在數學中,求和是任何類型數字的序列相加,稱為加數或加數;結果是它們的總和或總數。除了數字之外,也可以對其他類型的值求和:函數、向量、矩陣、多項式,以及通常在其上定義了表示為「+」的運算的任何類型的數學物件的元素。
無窮序列的總和稱為級數,它們涉及極限的概念,本條目不予考慮。
顯式序列的總和表示為一連串的加法。例如,[1, 2, 4, 2] 的和記為 1 + 2 + 4 + 2,得到 9,即 1 + 2 + 4 + 2 = 9。因為加法是結合可交換的,所以有不需要括號,無論加法的順序如何,結果都是一樣的。只有一個元素的序列的總和會產生這個元素本身。按照慣例,空序列(沒有元素的序列)的總和結果為 0。
- 裂項法:利用求出。
- 錯位相減法:透過兩個求和式的相減化簡求和數列的求和方法。
- 倒序求和:對於有對稱中心的函數首尾求和[1][2]
- 逐項求導:可從推導出[3]
- 阿貝爾變換:
以下設p為多項式,
-
- 有限和有封閉型和式
- 當p為常數時,是對等比數列求和,當p為一次多項式時,是對差比數列求和。
- [4]
-
- [7]
,其中為調和數或調和級數
- [參 1]
- [參 2]
范德蒙恆等式與廣義超幾何函數有關係:
以為例:
syms k n;symsum(k^9,k,1,n)
In[1]:= Sum[i^9, {i, 1, n}]
Out[1]:=
伍啟期. 组合数列求和. 佛山科學技術學院學報(自然科學版). 1996, (4) [2018-06-24]. (原始內容存檔於2019-05-02).
馬志鋼. 倒序求和几例. 中學生數學. 2006, (5) [2014-07-16]. (原始內容存檔於2019-05-09).
郭子偉. 高中基础数列知识微型整理. 數學空間. 2011, (1): 第11頁 [2014-07-16]. (原始內容存檔於2016-03-04).
黃嘉威. 方幂和及其推广和式. 數學學習與研究. 2016, (7) [2016-05-18]. (原始內容存檔於2020-01-15).
Károly Jordán. Calculus of Finite Differences.
Murray Spiegel. Schaum's Outline of Calculus of Finite Differences and Difference Equations.
劉治國. 一类指数型幂级数的求和. 撫州師專學報. 1994, (01): 第65–66頁 [2017-07-23]. (原始內容存檔於2019-05-08).
吳煒超. 数列不等式的定积分解法. 數學空間. 2011, (5): 第23–26頁 [2014-04-10]. (原始內容存檔於2015-09-24).