Remove ads
泰勒级数 来自维基百科,自由的百科全书
在数学中,泰勒级数(英语:Taylor series,Taylor expansion)用无限项连加式——级数来表示一个函数,这些相加的项由函数在某一点的导数求得。泰勒级数是以于1715年发表了泰勒公式的英国数学家布鲁克·泰勒(Sir Brook Taylor)来命名的。通过函数在自变量零点的导数求得的泰勒级数又叫做麦克劳林级数(英语:Maclaurin series),以苏格兰数学家科林·麦克劳林(Colin Maclaurin)的名字命名。
此条目包含过多行话或专业术语,可能需要简化或提出进一步解释。 (2022年12月8日) |
拉格朗日在1797年之前,最先提出带有馀项的现在形式的泰勒定理。实际应用中,泰勒级数需要截断,只取有限项,可以用泰勒定理估算这种近似的误差。一个函数的有限项的泰勒级数叫做泰勒多项式。一个函数的泰勒级数是其泰勒多项式的极限(如果存在极限)。即使泰勒级数在每点都收敛,函数与其泰勒级数也可能不相等。在开区间(或复平面上的开区间)上,与自身泰勒级数相等的函数称为解析函数。
在数学上,对于一个在实数或复数邻域上,以实数作为变量或以复数作为变量的函数,并且是无穷可微的函数,它的泰勒级数是以下这种形式的幂级数:
如果泰勒级数对于区间中的所有都收敛并且级数的和等于,那么我们就称函数为解析形的函数(analytic)。一个函数当且仅当(简单地说,“只有在且只要在”)能够被表示为幂级数的形式时,才是解析形的函数。通常会用泰勒定理来估计级数的馀项,这样就能够确定级数是否收敛于。上面给出的幂级数展开式中的系数正好是泰勒级数中的系数。
以下三个事实可以说明为什么泰勒级数是十分重要的:
对于一些无穷的可以被微分函数,虽然它们的展开式会收敛,但是并不等于。例如,分段函数,如果并且,则时所有的导数都为零,所以这个的泰勒级数为零,且其收敛半径为无穷大,不过函数仅在处为零。但是,在以复数作为变量的函数中这个问题并不存在,因为当沿虚轴趋于零,并不趋于零。
如果一个函数在某处引发一个奇点,它就无法被展开为泰勒级数,不过如果变量是负指数幂的话,我们仍然可以将其展开为一个级数。例如,虽然在的时候,会引发奇点,但仍然能够把这个函数展开为一个洛朗级数。
最近,专家们发现了一个用泰勒级数来求解微分方程的方法——Parker-Sochacki method[1]。用皮卡反复运算便可以推导出这个方法。
下面我们给出了几个重要的麦克劳林级数。当变量是复数时,这些等式依然成立。
由无穷递缩等比数列求和式:
以为底数的指数函数的麦克劳林级数是
以为底数的自然对数的麦克劳林级数是
常用的三角函数可以被展开为以下的麦克劳林级数:
希腊哲学家芝诺在考虑了利用无穷级数求和来得到有限结果的问题,得出不可能的结论 - 芝诺悖论。后来,亚里士多德对芝诺悖论在哲学上进行了反驳,但德谟克利特以及后来的阿基米德进行研究,此部分数学内容才得到解决。 正是用了阿基米德的穷竭法才使得一个无穷级数被逐步的细分,得到了有限的结果。[2]几个世纪之后,中国数学家刘徽也独立提出了类似的方法。[3]
进入14世纪,马德哈瓦最早使用了泰勒级数以及相关的方法[4]。尽管他的数学著作没有流传下来,但后来印度数学家的著作表明他发现了一些特殊的泰勒级数,这些级数包括正弦、余弦、正切、和反正切三角函数等等。之后,喀拉拉学派在他的基础上进行了一系列的延伸与合理逼近,这些工作一直持续到16世纪。
到了17世纪,詹姆斯·格雷果里同样继续着这方面的研究并且发表了若干麦克劳林级数。但是直到1715年,布鲁克·泰勒 [5] 提出了一个通用的方法来构建适用于所有函数的此类列级数。这就是后来被人们所熟知的泰勒级数。 麦克劳林级数是泰勒级数的特例,是爱丁堡大学的科林·麦克劳林教授在18世纪发表的,并以其名字命名。
牛顿插值公式也叫做牛顿级数,由“牛顿前向差分方程”的项组成,得名于伊萨克·牛顿爵士,最早发表为他在1687年出版的《自然哲学的数学原理》中第三编“宇宙体系”的引理五[6],此前詹姆斯·格雷果里于1670年和牛顿于1676年已经分别独立得出这个成果。一般称其为连续“泰勒展开”的离散对应。
对于x值间隔为非一致步长,牛顿计算均差,对x值间隔为单位步长1或一致但非单位量的情况,计算差分,前向差分的定义为:
牛顿前向差分插值公式为:
牛顿在1665年得出并在1671年写的《流数法》中发表了的无穷级数,在1666年得出了和的无穷级数,在1669年的《分析学》中发表了、、和的无穷级数;莱布尼茨在1673年大概也得出了、和的无穷级数。布鲁克·泰勒在1715年著作《Methodus Incrementorum Directa et Inversa (页面存档备份,存于互联网档案馆)》中研讨了有限差分方法,其中论述了他在1712年得出的泰勒定理,这个成果此前詹姆斯·格雷果里在1670年和莱布尼茨在1673年已经得出,而约翰·伯努利在1694年已经在《教师学报》发表。
他对牛顿的均差分的步长取趋于的极限,得出:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.