排序最佳化(ordinal optimization)也称为序最佳化,是最优化中的一种,是针对在偏序集(poset)上取值函数的最佳化[1][2][3][4]。排序最佳化可以应用在等候网络的理论中。
| 此条目需要 精通或熟悉数学的编者参与及协助编辑。 (2020年2月20日) |
偏序是指在集合P内的二元关系 "≤",是自反关系、反对称关系及传递关系。针对集合P内的所有a, b及c,会有以下的关系:
- a ≤ a(自反关系);
- 若 a ≤ b 且 b ≤ a ,则 a = b(反对称关系);
- if a ≤ b and b ≤ c,则 a ≤ c(传递关系).
偏序关系也可以说是预序关系。具有偏序关系的集合称为偏序集(poset)。
针对偏序集P内的两个相异元素a, b,若a ≤ b或b ≤ a,则a和b 是可比较的,否则是不可比较的。若偏序集中任两个元素都是可比较的,此偏序集称为全序关系或“chain”(也就是依顺序排列的自然数)。若任两个元素都是不可比较的,则称为反链。
以下是一些数学中偏序集的例子:
- 实数的偏序关系是标准的小于等于关系 ≤ ,也是全序集。
- 特定集合子集形成的集合(幂集),偏序关系是包含。
- 向量空间子空间的集合,偏序关系也是包含。
在许多领域都有排序最佳化的问题。计算机科学中会研究选择算法,这种算法比排序算法要简单[5][6]
决策论会研究选择算法,会要识别出“最佳”的子群体,或是识别出“近乎最佳”的子群体[7][8][9][10][11]。
自1960年代起,排序最佳化在其理论及应用上都有许多的扩展。其中的antimatroid及max-plus代数已应用在网络分析及等候理论中,特别是在等候网路中。排序最佳化也应用在离散事件仿真上[12][13][14]。
Brenda L. Dietrich; Hoffman, A. J. On greedy algorithms, partially ordered sets, and submodular functions. IBM J. Res. Dev. 47 (2003), no. 1, 25–30.
Topkis, Donald M. Supermodularity and complementarity. Frontiers of Economic Research. Princeton University Press, Princeton, NJ, 1998. xii+272 pp. ISBN 0-691-03244-0
Singer, Ivan Abstract convex analysis. Canadian Mathematical Society Series of Monographs and Advanced Texts. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1997. xxii+491 pp. ISBN 0-471-16015-6
Björner, Anders; Ziegler, Günter M. Introduction to greedoids. Matroid applications, 284–357, Encyclopedia Math. Appl., 40, Cambridge Univ. Press, Cambridge, 1992,
Gibbons, Jean Dickinson; Olkin, Ingram, and Sobel, Milton, Selecting and Ordering of Populations, Wiley, (1977). (Republished as a Classic in Applied Mathematics by SIAM.)
Santner, Thomas J., and Tamhane, A. C., Design of Experiments: Ranking and Selection, M. Dekker, (1984).
Robert E. Bechhofer, Thomas J. Santner, David M. Goldsman. Design and Analysis of Experiments for Statistical Selection, Screening, and Multiple Comparisons. John Wiley & Sons, 1995.
Friedrich Liese, Klaus-J. Miescke. 2008. Statistical Decision Theory: Estimation, Testing, and Selection. Springer Verlag.
Heidergott, Bernd; Oldser, Geert Jan; van der Woude, Jacob. Max plus at work: Modeling and analysis of synchronized systems, a course on max-plus algebra and its applications. Princeton Series in Applied Mathematics. Princeton, NJ: Princeton University Press. 2006: xii+213. ISBN 978-0-691-11763-8. MR 2188299.
- Fujishige, Satoru Submodular functions and optimization. Second edition. Annals of Discrete Mathematics, 58. Elsevier B. V., Amsterdam, 2005. xiv+395 pp. ISBN 0-444-52086-4
- Gondran, Michel; Minoux, Michel Graphs, dioids and semirings. New models and algorithms. Operations Research/Computer Science Interfaces Series, 41. Springer, New York, 2008. xx+383 pp. ISBN 978-0-387-75449-9
- Dietrich, B. L.; Hoffman, A. J. On greedy algorithms, partially ordered sets, and submodular functions. IBM J. Res. Dev. 47 (2003), no. 1, 25–30.
- Murota, Kazuo Discrete convex analysis. SIAM Monographs on Discrete Mathematics and Applications. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2003. xxii+389 pp. ISBN 0-89871-540-7
- Topkis, Donald M. Supermodularity and complementarity. Frontiers of Economic Research. Princeton University Press, Princeton, NJ, 1998. xii+272 pp. ISBN 0-691-03244-0
- Singer, Ivan Abstract convex analysis. Canadian Mathematical Society Series of Monographs and Advanced Texts. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1997. xxii+491 pp. ISBN 0-471-16015-6
- Björner, Anders; Ziegler, Günter M. Introduction to greedoids. Matroid applications, 284–357, Encyclopedia Math. Appl., 40, Cambridge Univ. Press, Cambridge, 1992,
- Zimmermann, U. Linear and combinatorial optimization in ordered algebraic structures. Ann. Discrete Math. 10 (1981), viii+380 pp.
- Cuninghame-Green, Raymond Minimax algebra. Lecture Notes in Economics and Mathematical Systems, 166. Springer-Verlag, Berlin-New York, 1979. xi+258 pp. ISBN 3-540-09113-0
- Baccelli, François Louis; Cohen, Guy; Olsder, Geert Jan; Quadrat, Jean-Pierre. Synchronization and linearity: An algebra for discrete event systems. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. Chichester: John Wiley & Sons, Ltd. 1992: xx+489. ISBN 0-471-93609-X. MR 1204266.
- Glasserman, Paul; Yao, David D. Monotone structure in discrete-event systems. Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics. New York: John Wiley & Sons, Inc. 1994: xiv+297. ISBN 0-471-58041-4. MR 1266839.
- Heidergott, Bernd; Oldser, Geert Jan; van der Woude, Jacob. Max plus at work: Modeling and analysis of synchronized systems, a course on max-plus algebra and its applications. Princeton Series in Applied Mathematics. Princeton, NJ: Princeton University Press. 2006: xii+213. ISBN 978-0-691-11763-8. MR 2188299.
- Ho, Y.C., Sreenivas, R., Vakili, P.,"Ordinal Optimization of Discrete Event Dynamic Systems", J. of DEDS 2(2), 61-88, (1992).
- Allen, Eric, and Marija D. Ilic. Price-Based Commitment Decisions in the Electricity Market. Advances in industrial control. London: Springer, 1999. ISBN 978-1-85233-069-9