弗里德里希·路德维希·戈特洛布·弗雷格(德语:Friedrich Ludwig Gottlob Frege,宽式IPA:/ˈɡɔtlop ˈfʁeːɡə/;1848年11月8日—1925年7月26日),著名德国数学家、逻辑学家和哲学家。是数理逻辑和分析哲学的奠基人。
Quick Facts 弗里德里希·路德维希·戈特洛布·弗雷格, 出生 ...
Close
弗雷格的父亲是擅长数学的学校教师。1869年弗雷格进入耶拿大学学习,两年后转至哥廷根大学,1873年在那里得到了他在数学领域的哲学博士学位。 根据汉斯·斯路伽的资料(1980), 弗雷格在大学所受的逻辑和哲学教育仍是未知。1875年,他回到耶拿担任讲师,并于1879年成为助理教授, 1896年成为教授。弗雷格只有一名注册学生,鲁道夫·卡尔纳普。 弗雷格的孩子都在成年前死去,而他于1905年领养了一名男孩。
弗雷格的工作没有在有生之年得到广泛的赞誉,但是受到伯特兰·罗素和路德维希·维特根斯坦和卡尔纳普的称赞,认为他注定会产生重大的影响。二战后他的工作才在英语世界广为人知,部分原因是一些哲学家和逻辑学家移居到了美国——例如卡尔纳普,塔尔斯基,和哥德尔——那些了解尊敬弗雷格工作并将他的主要著作翻译成英文的人。弗雷格的工作对分析哲学产生了巨大的影响。
弗雷格被公认为伟大的逻辑学家,如同亚里士多德,哥德尔,塔尔斯基。他于1879年出版的《概念文字》标志着逻辑学史的转折。《概念文字》开辟了新的领域。
弗雷格是政治立场保守的德国数学家,他重新激起人们对逻辑学的哲学兴趣。他试图找出算术的“基础”,以演绎的方式证明“二加二等于四”这类基本恒等式必然为真。从亚里斯多德以来,逻辑学一直是研究命题与命题彼此关系的学问,弗雷格则扩大逻辑学的内容,创造了“量化”逻辑 ( 与“全部”、“有些”、“无”等范畴有关),使其成为今日哲学家熟知与沿用的知识。正如笛卡儿与洛克沿著知识论大道发展现代哲学,弗雷格也沿著逻辑学与语言分析之路发展当代哲学。“语言学转向”是个令人兴奋的突破,它试图以分析哲学为基础,解释所有的理论。
- Online bibliography of Frege's works and their English translations. (页面存档备份,存于互联网档案馆)
- 1879. Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens. Halle a. S.: Louis Nebert. Translation: Concept Script, a formal language of pure thought modelled upon that of arithmetic, by S. Bauer-Mengelberg in Jean Van Heijenoort, ed., 1967. From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931. Harvard University Press.
- 1884. Die Grundlagen der Arithmetik: eine logisch-mathematische Untersuchung über den Begriff der Zahl. Breslau: W. Koebner. Translation: J. L. Austin, 1974. The Foundations of Arithmetic: A logico-mathematical enquiry into the concept of number, 2nd ed. Blackwell.
- 1891. "Funktion und Begriff." Translation: "Function and Concept" in Geach and Black (1980).
- 1892a. "Über Sinn und Bedeutung" in Zeitschrift für Philosophie und philosophische Kritik 100: 25-50. Translation: "On Sense and Reference" in Geach and Black (1980).
- 1892b. "Über Begriff und Gegenstand" in Vierteljahresschrift für wissenschaftliche Philosophie 16: 192-205. Translation: "Concept and Object" in Geach and Black (1980).
- 1893. Grundgesetze der Arithmetik, Band I. Jena: Verlag Hermann Pohle. Band II, 1903. Partial translation: Furth, M, 1964. The Basic Laws of Arithmetic. Uni. of California Press.
- 1904. "Was ist eine Funktion?" in Meyer, S., ed., 1904. Festschrift Ludwig Boltzmann gewidmet zum sechzigsten Geburtstage, 20. Februar 1904. Leipzig: Barth: 656-666. Translation: "What is a Function?" in Geach and Black (1980).
- Peter Geach and Max Black, eds., and trans., 1980. Translations from the Philosophical Writings of Gottlob Frege, 3rd ed. Blackwell.
Frege intended that the following three papers be published together in a book titled Logical Investigations. The English translati/ns thereof were so published in 1975.
- 1918-19. "Der Gedanke: Eine logische Untersuchung (Thought: A Logical Investigation)" in Beiträge zur Philosophie des Deutschen Idealismus I: 58-77.
- 1918-19. "Die Verneinung" (Negation)" in Beiträge zur Philosophie des deutschen Idealismus I: 143-157.
- 1923. "Gedankengefüge (Compound Thought)" in Beiträge zur Philosophie des Deutschen Idealismus III: 36-51.
- George Boolos, 1998. Logic, Logic, and Logic. MIT Press. Contains several influential papers on Frege's philosophy of arithmetic and logic.
- Michael Dummett, 1973. Frege: Philosophy of Language. Harvard University Press.
- Michael Dummett, 1991. Frege: Philosophy of Mathematics. Harvard University Press.
- Demopoulos, William, 1995. "Frege's Philosophy of Mathematics". Harvard University Press. A nice collection that explores the significance of Frege's theorem, and his mathematical and intellectural background.
- Gillies, Douglas A., 1982. Frege, Dedekind, and Peano on the foundations of arithmetic. Assen, Netherlands: Van Gorcum.
- Ferreira, F. and Wehmeier, K., 2002, "On the consistency of the Delta-1-1-CA fragment of Frege's Grundgesetze," Journal of Philosophic Logic 31: 301–11.
- Ivor Grattan-Guinness, 2000. The Search for Mathematical Roots 1870-1940. Princeton Uni. Press. Fair to the mathematician, less so to the philosopher.
- Hatcher, William, 1982. The Logical Foundations of Mathematics. Pergamon. Uses natural deduction to rederive Peano's axioms from the Grundgesetze system, recast in modern notation.
- Hill, C. O. Word and Object in Husserl, Frege and Russell: The Roots of Twentieth-Century Philosophy. Athens: Ohio University Press, 1991.
- Hill, C. O., and Rosado Haddock, G. E., 2000. Husserl or Frege: Meaning, Objectivity, and Mathematics. Open Court. The Frege-Husserl-Cantor triangle.
- Hans Sluga, 1980. Gottlob Frege. Routledge.