Remove ads
银河系中心位置上一个结构非常致密的强辐射源,通常被认为是一个超大质量黑洞所在地 来自维基百科,自由的百科全书
人马座A*(Sagittarius A*,简写为Sgr A*,星号*读作“star”或“星”[3])是个位于银河系中心的超大质量黑洞[4][5][6]。它位于星座人马座和天蝎座的边界附近,大约位于黄道以南5.6°[7],视觉上接近蝴蝶星团(M6)和尾宿八(天蝎座λ)。
这颗天体是明亮致密的电波源。人马座A*的名字有其历史渊源。在 1954年[8],约翰·丹尼尔·克劳斯、柯贤清(Hsien-Ching Ko)和肖恩·马特(Sean Matt)列出了他们用俄亥俄州立大学电波望远镜在250MHz下确定的电波源。这些电波源按星座排列,并随意的分配字母来标示,但字母A通常表示星座内最亮的电波源。星号*是因为它的发现被认为是“令人兴奋的”[9]。这与用星号表示激发态原子的命名法一致(例如,氦的激发态为He*)。星号是罗伯特·L·布朗于1982年设置[10],他知道,银河系中心最强的电波发射似乎是源自于一个紧凑的非热射电体。
它是非常光亮及致密的无线电波源,大约每11分钟自转一圈[11]。人马座A*是目前人类观测到离地球最近,被认为是研究黑洞物理的最佳目标[12]。
对围绕人马座A*运行的几颗恒星的观测,特别是S2,已被用来确定物体的质量和半径上限。基于质量和日益精确的半径值,天文学家得出结论:人马座A*一定是银河系中央的超大质量黑洞[13]。其质量的当前值为±0.014百万 4.154太阳质量。[2]
赖因哈德·根策尔和安德烈娅·盖兹因发现人马座A*是一个超大质量致密天体而获得2020年诺贝尔物理学奖,而黑洞是当时唯一合理的解释[14]。
2022年5月12日,天文学家发布于2017年4月使用全球射电天文台网络事件视界望远镜制作的人马座A*视界周围吸积盘的第一张影像[15],确认物体是黑洞。这是继2019年M87的超大质量黑洞之后,确认的第二张黑洞影像[16][17]。
2022年5月12日,第一张人马座A*的照片由事件视界望远镜的合作单位共同发布。这张影像基于2017年拍摄的无线电干涉仪数据,证实该物体包含一个黑洞[16][19]。这张影像经过五年的计算处理才得以完成[20]。这些数据由位于六个地理位置的八架电波望远镜观测站收集,经由孔径合成数据获得的电波影像,仅由来源稳定的夜间观测数据生成。人马座A*的无线电发射以分钟为单位变化,使分析复杂化[21]。
他们的结果给出了电波源的总体角大小为±2.3 μas 51.8[19]。在距离26,000光年(8,000秒差距)处,这相当于51.8 × 106千米(32.2 × 106英里)的直径。相比之下,地球距离太阳 150 × 106千米(1.0天文单位;93 × 106英里),水星在近日点时距离太阳46 × 106 km(0.31 AU;29 × 106 mi)。人马座A*每年的自行约为赤经 −2.70mas,赤纬 −5.6mas[22][23][24]。该望远镜对这些黑洞的量测比以前更严格地检验了爱因斯坦的相对论,结果完全吻合[17]。
2019年,使用安装在飞机的同温层红外线天文台上的高解析度机载宽频相机+(High-resolution Airborne Wideband Camera-Plus,HAWC +)进行的测量[25],发现磁场导致周围的气体和尘埃环,其温度范围为−280至17,500 °F(99.8至9,977.6 K;−173.3至9,704.4 °C)[26],流入围绕人马座A*的轨道,维持著黑洞的低辐射[27]。
多个研究队都尝试利用甚长基线干涉仪(VLBI)以无线电频谱拍摄人马座A*的成像。以现今最高解像的量度(即波长1.3毫米),人马座A*约有37微角秒的大小。[29]按距离26000光年来计算,人马座A*的直径为4400万公里,近0.3天文单位。地球与太阳的距离(1天文单位)约为1亿5千万公里;而水星最接近太阳的距离则为4600万公里。
若人马座A*刚好坐落在黑洞的中央,其大小会因重力透镜效应而被放大。根据广义相对论,若以4百万太阳质量的黑洞来比较,人马座A*的可观测大小最少也是该黑洞史瓦西半径的5.2倍。但是4百万太阳质量的黑洞约有52微角秒,以人马座A*的37微角秒来看,其大小明显大了很多,所以相信人马座A*的放射源并非在洞的中心,而是在周边接近事件视界的光亮点,有可能是在吸积盘或由吸积盘喷出的相对论性喷流。[29]
人马座A*的质量估计为431 ± 38万[30]、或410 ± 60万太阳质量。[31]设这些质量被限制在4400万公里直径的球体内,其密度将会比以往估计的高出10倍。尽管可能有其他理论能解释这种质量及大小,但人马座A*萎缩成一个超大质量黑洞的时间应比银河系的寿命短。[29]
现时已有对黑洞本身的直接观测,相关照片发布于2022年5月12日,但在此前,观测纪录就已显示应有一个黑洞位于人马座A*附近。目前所探测到的无线电波及红外线能量等等,乃是从掉入黑洞时被加热至几百万度的气体及尘埃所发出。黑洞本身相信只会发出霍金辐射。
卡尔·央斯基被认为是射电天文学之父,他于1933年4月发现射电信号来自人马座方向的某个位置,指向银河系的中心[32]。无线电源后来被称为人马座A。他的观察结果并没有像我们现在所知的银河中心那样向南延伸[33]。Jack Piddington和Harry Minnett在悉尼Potts Hill水库使用CSIRO射电望远镜进行的观测发现了一个离散且明亮的“人马座-天蝎座”射电源[34],在使用80-英尺(24-米)的CSIRO多佛高地的射电望远镜进一步观察后,在给《自然》的一封信中被确定为可能的银河中心[35]。
后来的观察表明,人马座A实际上由几个重叠的子成分组成; 1974年2月13日至15日,天文学家布鲁斯·巴利克(Bruce Balick)和罗伯特·布朗(Robert Brown)使用美国国家射电天文台的基线干涉仪发现了一个明亮且非常紧凑的组件Sgr A*[37][38]。Sgr A*这个名字是布朗在1982年的一篇论文中创造的,因为射电源是“激发的”,并且激发态原子被用星号来表示[39][40]。
马克斯·普朗克地外物理研究所由Rainer Schödel所带领的国际研究队观测了接近人马座A*的星体S2达十年,于2002年10月16日公布人马座A*为一大质量致密体的证据。[41]从S2的克卜勒轨道计算,人马座A*的质量为260 ± 20万太阳质量,半径为120天文单位。[42]其后的观测估计人马座A*的质量应为410万太阳质量,体积半径少于45天文单位。[43]
于2004年11月,天文学家发现可能是中介质量黑洞的GCIRS 13E,其轨道距人马座A*约3光年。GCIRS 13E的质量为1300太阳质量,属于有7个恒星的星团。这次观测支持了超大质量黑洞会吸收周边较细小黑洞及星体来增长的说法。
经过观测人马座A*16年,相信其质量为431 ± 38万太阳质量。[30]研究人员赖因哈德·根策尔认为已有初步证据证明超大质量黑洞的存在。[44]
在2015年1月5日,NASA报告说观测到人马座A*的X射线闪焰破纪录的比平常亮了400倍。天文学家宣称,这种不寻常的事件可能是由于一颗小行星落入黑洞被扯碎,或者是因气体流入人马座A*引发磁力线纠缠造成的[18]。
2019年5月13日,天文学家使用凯克天文台目睹了人马座A*突然变亮,比平时亮75倍,这表明超大质量黑洞可能遇到了另一个天体[45]。
2022年5月12日,事件视界望远镜(EHT)发表直接观测人马座A*的影像,直接证实了位于银河系中间的人马座A*为直径约6,000万公里的黑洞,此为人类第2次成功捕捉黑洞影像[46],对人马座A*的观测与对M87星系中心黑洞的观测同时展开;然而尽管距离较近,但由于人马座A*的中心黑洞体积较小,以致周遭气体的公转速度快上许多之故,因此人马座A*成像难度也较高,而这样的技术问题,也使得人马座A*的相关照片较晚发布。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.