Loading AI tools
来自维基百科,自由的百科全书
在图论中,ER随机图(Erdős–Rényi random graph)是一种网络,以概率p连接N个节点中的每一对节点。ER随机图以埃尔德什·帕尔和阿尔弗雷德·雷尼(Alfréd Rényi)的名字命名。他们在1959年发明了这种模型。[1][2]同年,Edward Gilbert独立提出了另外一个模型。[3]
在Erdős-Rényi模型中,在顶点集数目相同时,具有固定边数的所有图均具有同等的概率出现。在吉尔伯特(Gilbert)引入的模型中,每个边都有固定的出现概率,并且独立于其他边的概率。这些模型可用于概率方法中,以证明满足各种属性的图的存在,或者对几乎所有图具有属性的含义提供严格的定义。
ER随机图主要有两种高度相关的模型。
通常在顶点数n趋向于无穷大时研究随机图的性质和变化行为。尽管p或M可以为固定值,但它们也可以依赖n的取值。例如,G(n, 2ln(n)/n)中的每个图几乎都是连通图;随着n趋于无穷大,G(n, 2ln(n)/n)中几乎每个图都被连接。
G(n, p)的边数期望值为,因此根据大数定理,几乎所有G(n, p)模型中的图的边数都会有个。因此,一个粗略的想法是,如果pn2 → ∞,并且,那么随着n的增大,G(n,p)的变化行为应该与G(n, M)类似。
在pn2 → ∞假设的基础上,我们考虑一个图的单调性质P(这意味着,若A是B的子图,并且A拥有性质P,那么B也将拥有性质P);那么“P对于几乎所有G(n, p)成立”等价于“P对于几乎所有G(n, M)成立”。但对于非单调的性质P,表述的等价性不一定成立。
事实上,G(n, p)模型是当今最常用的模型,部分原因是边存在的独立性简化了许多分析。
使用上面的符号,G(n, p)中的图边数的平均值是。任何特定顶点的度服从于二项分布:[5]
其中n是图中顶点的数目。因为
此分布为泊松分布对于较大的n和常数np。
在1960年的论文中,Erdős和Rényi[6]对于不同的p精准地描述了G(n, p)变化行为。这些结果包括:
因此是一个锋利阈值。
随着n趋于无穷大,G(n,p)可以几乎精确地描述图的其他属性。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.