定义
一个环称作阿廷环,若且唯若对每个由的理想构成的降链,必存在,使得对所有的都有(换言之,此降链将会固定)。
将上述定义中的理想代换为左理想或右理想,可以类似地定义左阿廷环与右阿廷环,A是左(右)阿廷环若且唯若A在自己的左(右)乘法下形成一个左(右)阿廷模;对于交换环则无须分别左右。
例子
- 设为一个域,若环是布于上的有限维代数,则是阿廷环。
基本性质
若一个环是交换阿廷环,则满足下列性质:
就代数几何的观点,阿廷环的谱在拓朴上只是有限多个点,但其结构层可能带有幂零的元素,这就使得局部阿廷环成为描述无穷小变化量的代数语言。
参见条目
文献
- Charles Hopkins. Rings with minimal condition for left ideals. Ann. of Math. (2) 40, (1939). 712--730.
- Serge Lang, Algebra (2002), Graduate Texts in Mathematics 211, Springer. ISBN 0-387-95385-X
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.