Remove ads
来自维基百科,自由的百科全书
核武器当量即核武器的爆炸当量,指其核爆炸可以释放出的能量,通常用释放出相同能量的三硝基甲苯(TNT)的吨位来衡量。常见的单位有千吨(kt)和百万吨(Mt),有时也用太焦耳(TeraJoules)。因为测量TNT爆炸产生的能量具有一定主观性,加之试验误差,精确测定很困难(特别是在核武器研发初期)。因此,一千吨TNT爆炸的能量约定俗成的定为1012卡路里,相当于4.184太焦耳。[1]
当量-重量比是指核武器的当量与其自身重量的比值。对于聚变武器(热核武器),当量-重量比的理论极限是每吨位炸弹6百万吨TNT,相当于25太焦耳/千克。[2]1960年代曾报道过当量在5.2百万吨/吨,甚至更高的单弹头核武器。[2]但从那时起,为了增加打击效率,多弹头核武器受到青睐。因此,核武器开始小型化,现代单弹头核武器的当量-重量比开始走下坡路。
从上往下当量递增(大部分数据为近似值):
核弹 | 当量 | 备注 | |
---|---|---|---|
千吨TNT | 太焦耳 | ||
大卫克罗无后座力炮 | 0.01 | 0.042 | 当量可变的战术核武器。弹头重23千克,是美国核武器中最轻的。和特殊原子爆破弹药和 GAR-11猎隼式核导弹是同一种弹头。 |
"小男孩"自由落体核武器 | 13-18 | 54-75 | 装药为铀-235的裂变核武器,1945年由美国投掷于广岛,是人类第一颗用于实战的原子弹。 |
"胖子" 自由落体核武器 | 20-22 | 84-92 | 装药为钚-239的裂变核武器,1945年由美国投掷于长崎,是人类第二颗用于实战的原子弹。 |
W76弹头 | 100 | 420 | 据猜测有12枚此类弹头在具备多目标重返大气层运载能力的三叉戟II型弹道飞弹上。国际条约限制为8枚。 |
W87弹头 | 300 | 1,300 | 有10枚此类弹头在具备多目标重返大气层运载能力的LGM-118A维和者导弹上。 |
W88弹头 | 475 | 1,990 | 据猜测有12枚此类弹头在具备多目标重返大气层运载能力的三叉戟II型弹道飞弹上。国际条约限制为8枚。 |
常青藤之王弹头 | 500 | 2,100 | 威力最大的裂变核武器。装药为60千克铀-235。 |
B83核弹 | 当量可变 | 上限为120万吨TNT; 美国现役核武器中威力最大的一种。 | |
常春藤麦克氢弹 | 10,400 | 44,000 | 世界第一个氢弹 |
勇敢城堡热核武器 | 15,000 | 63,000 | 是美国威力最大的核试验。 |
EC17/Mk-17, EC24/Mk-24和B41核弹(Mk-41) | 当量可变 | 是美国威力最大的热核武器:2500万吨TNT;Mk-17是体积和质量最大的核武器(18,000千克);Mk-41(或B41核弹)重达4800千克,当量为2500万吨TNT,是有史以来当量-重量比最高的核弹。它们全部是自由落体炸弹,由B-36和平缔造者轰炸机空投。 | |
城堡行动系列核试验 | 48,200 | 202,000 | 是美国威力最大的系列核试验。 |
沙皇炸弹 | 50,000 | 210,000 | 是前苏联威力最大的核武器,当量为5000万吨TNT。如果以贫化铀代替包覆融合芯(tamper)中的铅,该弹的当量据称可以达到一亿吨TNT。 |
截止1996年以来的所有核试验 | 510,300 | 2,135,000 | 从1945年到1996年,美国、前苏联、法国、英国和中国大气层核试验的总当量为4.279亿吨TNT;上述五国地下核试验的总当量为0.824亿吨TNT。全部加起来,上述五国的核试验相当于爆炸了5.103亿吨TNT。其他有核国家(比如印度、巴基斯坦和北朝鲜等)的当量还未计算进去。[3] |
作为比较,美国GBU-43大型空爆炸弹(MOAB,戏称为“炸弹之母”)的当量只有11吨TNT;1995年俄克拉何马城爆炸案中案犯使用的硝铵炸药只相当于2吨TNT;2015年天津港危化品仓库爆炸事故当量相当于445吨TNT;2020年贝鲁特爆炸事故当量大约在数百吨至一千吨之间的TNT。即使跟最小的核武器相比,常规爆炸也难以企及。
理论上,裂变核武器所能达到的最高当量-重量比约为每吨位炸弹600万吨TNT,相当于25太焦耳/千克。[2]迄今达到的最高值略小于这个极限。现代小巧核武器的当量-重量比更低,因为需要考虑载具的运载能力。
现代核武库中已经很少有大型单弹头。取而代之的是多目标重返大气层载具运载的多弹头系统。在当量或者载荷相近时,后者的破坏力远远超出前者。单个弹头的破坏力是其当量的2/3。在多弹头系统中,虽然每个弹头的破坏力相对小些,但是整体上多弹头的破坏力不但能够补偿失去的当量数,反而会因为更好的当量-重量比而具有更大的破坏力。
核爆炸的当量有时很难计算,误差较大。当量的计算有几种方式,比如通过爆炸的范围、亮度、地震数据和冲击波的强度来确定。恩里科·费米曾用过一种非常粗略的方法来估计三位一体核试的当量。他在爆炸冲击波到来时扔出一把碎纸片,然后测量纸片飞了多远,以此估计爆炸的强度。[5]
1950年,英国物理学家杰弗里·泰勒曾利用简单的量纲分析和对极热空气热容的估计,估算了圣三一核试验的当量。他得到的近似值精度颇佳。起初泰勒的工作是严格保密的。1950年代,当前苏联爆炸了同类核弹之后,圣三一核试验被解密。泰勒于是发表了一篇文章,其中包括对圣三一核试验中火球的分析。泰勒指出,开始时火球的大小R仅仅依赖于爆炸产生的能量E、引爆后的时间t和空气的密度ρ。唯一能得到长度量纲的计算公式为:
S是一个无量纲的常数,是热容比(γ = Cp/Cv,或者称作绝热指数)的低阶函数,因此在任何条件下都近似为1。
泰勒观察了圣三一核试验中的火球随时间的变化后发现,R5/t2对核试验是一个常数,特别是时间在0.38毫秒(冲击波刚刚形成)和1.93毫秒(大量能量以辐射热的形式散失)之间。
泰勒选择了爆炸后t=25毫秒,这时火球半径为140米。爆炸当天圣三一的空气密度为1千克/立方米。用这些值代入以上公式,泰勒得到圣三一核试验爆炸当量为二万二千吨TNT(90太焦耳)。值得注意的是,圣三一核试验中的火球是半个火球,而不是一个完整的球。但是这个简单的计算得到的结果同官方数据(二万吨TNT)相差仅10%。[6]
当热容比γ小于2时,泰勒的常数S可以用下式来估计:[7]
S = [75(γ-1)/8π]1/5
完全解离空气分子的热容比为1.67;极热的未解离空气分子的热容比为1.20。在核弹火球中的空气与标准状态下的空气恰好有同样的热容比:1.40。根据这个数据,泰勒的常数S在绝热冲击波区为1.036。
许多核爆未公布数据,因此其当量均有争议,特别是涉及到政治的时候。比如,在广岛和长崎爆炸的原子弹设计相当不同。事后估计它们的当量很困难。投掷于广岛的“小男孩”的当量估计为一万二千到一万八千吨TNT(误差20%),投掷于长崎的“胖子”估计为一万八千到二万三千吨TNT(误差10%)。这样的数据可以用来评估其它炸弹在实战中的性能。比如“常春藤麦克”热核武器相当于867或578个广岛核弹。其它受到争议的还包括“沙皇炸弹”的当量。不同的政治人物使用不同的数值。有的说“只有五千万吨”,另外的则说“五千七百万吨”。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.