曼德博集合

在复平面上组成分形的点的集合 来自维基百科,自由的百科全书

曼德博集合

曼德博集合(英语:Mandelbrot set,或译为曼德布洛特复数集合)是一种在复平面上组成分形的点的集合,以数学家本华·曼德博的名字命名。曼德博集合与朱利亚集合有些相似的地方,例如使用相同的复二次多项式来进行迭代

Thumb
如果c点属于曼德博集合M则为黑色,反之为白色

定义

曼德博集合可以用复二次多项式来定义:

其中 是一个复数参数。

开始对 进行迭代

每次迭代的值依序如以下序列所示:

不同的参数 可能使序列绝对值逐渐发散到无限大,也可能收敛在有限的区域内。

曼德博集合 就是使序列不延伸至无限大的所有复数 集合

特性

  • 自相似
  • 面积为1.5065918561[1][2]

相关的定理

定理一

,则

证明:

假设 为真

第一步:

因为

由以上可得知

第二步:

假设 成立

由上式可得知

由数学归纳法可得知对于所有的n(n=1,2,...), 皆比 小。

当n趋近无限大时 依然没有发散,所以 ,故得证。


定理二

,则

证明:

假设

第一步:

,左右同乘 再减去 可得到下式

由以上可得知

第二步:

假设 成立,则

因为

,左右同乘 再减去 可得到下式

由以上可得知

由数学归纳法可得知 ,可看出随著迭代次数增加 逐渐递增并发散。

假如不发散,则收敛于某个常数,

再取极限得

,矛盾,故发散。


所以若 ,则 ,故得证。

定理三

,则

证明:

要证明若 ,则

首先分别探讨 两种情形

由定理二可知道 时,

接著要证明 时的情况:

假设 ,因为 ,所以 ,而

因为

,左右同乘 再减去 可得到下式

由以上可得知

由数学归纳法可得知 ,可看出随著迭代次数增加 逐渐递增并发散。

所以在 的情况下也是

综合上述可得知不论 为多少

,则 ,故得证。

利用定理三可以在程式计算时快速地判断 是否会发散。

计算的方法

曼德博集合一般用计算机程序计算。对于大多数的分形软件,例如Ultra fractal,内部已经有了比较成熟的例子。下面的程序是一段伪代码,表达了曼德博集合的计算思路。

For Each c in Complex
 repeats = 0
 z = 0
 Do
  z = z^2 + c
  repeats = repeats + 1
 Loop until abs(z) > EscapeRadius or repeats > MaxRepeats '根据定理三,EscapeRadius可设置为2。
 If repeats > MaxRepeats Then
  Draw c,Black                                            '如果迭代次数超过MaxRepeats,就将c认定为属于曼德博集合,并设置为黑色。
 Else
  Draw c,color(z,c,repeats)                               'color函数用来决定颜色。
 End If
Next

决定颜色的一些方法

  1. 直接利用循环终止时的Repeats
  2. 综合利用z和Repeats
  3. Orbit Traps


mand = Compile[{{z0, _Complex}, {nmax, _Integer}}, 
   Module[{z = z0, i = 1}, 
    While[i < nmax && Abs[z] <= 2, z = z^2 + z0; i++]; i]];
ArrayPlot[
 Reverse@Transpose@
   Table[mand[x + y I, 500], {x, -2, 2, 0.01}, {y, -2, 2, 0.01}]]

各种图示

动画
Thumb
点击此图像可观看动态影像。
Thumb
最原始图片
Thumb
放大等级1
Thumb
放大等级2
Thumb
放大等级3
Thumb
放大等级4
Thumb
放大等级5
Thumb
放大等级6
Thumb
放大等级7
Thumb
放大等级8
Thumb
放大等级9
Thumb
放大等级10
Thumb
放大等级11
Thumb
放大等级12
Thumb
放大等级13
Thumb
放大等级14

参考资料

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.