Loading AI tools
来自维基百科,自由的百科全书
在交换代数中,一个环 上的投射模是自由模的推广,它有多种等价的定义;就几何的观点,投射模之于自由模一如向量丛之于平凡向量丛。在范畴论的语言中,投射模可以推广为一个阿贝尔范畴中的投射对象。
投射模首见于昂利·嘉当与塞缪尔·艾伦伯格的重要著作 Homological Algebra,由此定义的投射分解是同调代数的基本概念之一。
此节给出投射模的两种等价定义。
投射模最直接的刻划是一个自由模的直和项;换言之,一个模 是投射模,若且唯若存在另一个模 使得 是自由模。此时 是 的一个投影态射的项。
较容易操作也较符合范畴论思想的定义是利用提升性质。模 是投射模,若且唯若对任何模满射 及模态射 ,存在模态射 使得 (请留意:在此不要求唯一性)。用交换图表现则更明了:
此定义的优势在于它可以推广到阿贝尔范畴,从而引至投射对象的概念,在此并不需要考虑自由对象。反转箭头则得到对偶概念内射模。
另一种在探讨Ext函子时特别有用的表述如下:模 是投射模,若且唯若任何正合序列
都诱导出正合序列
换言之, 是正合函子;实则对任何模 ,函子 总是左正合的,而投射性相当于右正合性。由此立刻得到投射模的同调刻划: 是投射模若且唯若
投射模理论的想法之一是向量丛的类比,对于紧豪斯多夫空间上的实值连续函数环,或紧光滑流形上的光滑函数,此类比有严格的表述,详阅条目Swan 定理。
向量丛是局部自由的;只要环上有合适的局部化概念,例如对环的一个积性子集局部化,则可以定义局部自由模。对于诺特环上的有限生成模,其投射性等价于局部自由性。对于非诺特环,则存有局部自由但非投射模的例子。
Quillen-Suslin定理是另一个深入的结果:它断言若 是域或主理想域,而 是其上的多项式环,则任何投射 -模都是自由模。
此问题在域的情形由塞尔首先提出。Bass 解决了非有限生成模的情形,Quillen 与 Suslin 则同时而独立地处理有限生成模的情形。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.