Loading AI tools
来自维基百科,自由的百科全书
李亚普诺夫方程(英语:Lyapunov equation)是控制理论中的名词,离散李亚普诺夫方程的型式如下:
李亚普诺夫方程应用在控制理论中的许多分支中,例如稳定性分析及最优控制。李亚普诺夫方程是得名自俄罗斯数学家亚历山大·李亚普诺夫。
在以下的定理中,,且 和是对应矩阵。而的意思是指矩阵为正定矩阵。
定理(连续时间版本):给定任意,存在唯一满足的充份必要条件是线性系统是全域渐近稳定。二次函数是李亚普诺夫函数,可以验证系统的稳定性。
定理(离散时间版本):给定任意,存在唯一满足的充份必要条件是线性系统是全域渐近稳定。为其李亚普诺夫函数。
有特殊的软件可以求解李亚普诺夫方程。若是离散型式,常会用Kitagawa的Schur法[1],若是连续型式,则会用Bartels和Stewart的计算法[2]。
定义(向量化)运算子是将矩阵A的所有列堆起来所形成的列向量,而是和的克罗内克积。两种李亚普诺夫方程都可以用矩阵方程的解来表示。而且,若矩阵稳定,解也可以用积分(连续时间)或是无限项和(离散时间)来表示。
利用的结果,可以得到
其中为可相乘的单位矩阵[3]。可以积分或或是求解线性方程,即可以得到。再将各列重新整理,即可得到。
而且,若稳定,解也可以表示为
再利用克罗内克积和运算子,可以得到矩阵方程
其中是将各元素取共轭得到的矩阵。
类似离散时间的情形,若稳定,解也可以表示为
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.