Loading AI tools
来自维基百科,自由的百科全书
短时距傅里叶变换(Short-time Fourier Transform, STFT)是傅里叶变换的一种变形,也称作加窗傅里叶变换(Windowed Fourier transform)或Time-dependent Fourier transform,用于决定随时间变化的信号局部部分的正弦频率和相位。实际上,计算短时距傅里叶变换的过程是将长时间信号分成数个较短的等长信号,然后再分别计算每个较短段的傅里叶变换。通常拿来描绘频域与时域上的变化,为时频分析中其中一个重要的工具。
将信号做傅里叶变换后得到的结果,并不能给予关于信号频率随时间改变的任何信息。以下的例子作为说明:
傅里叶变换后的频谱和短时距傅里叶变换后的结果如下:
由上图可发现,傅里叶变换只提供了有哪些频率成分的信息,却没有提供时间信息;而短时傅里叶变换则清楚的提供这两种信息。这种时频分析的方法有利于频率会随着时间改变的信号,如音乐信号和语音信号等分析。
简单来说,在连续时间的例子,一个函数可以先乘上仅在一段时间不为零的窗函数再进行一维的傅里叶变换。再将这个窗函数沿着时间轴挪移,所得到一系列的傅里叶变换结果排开则成为二维表象。数学上,这样的操作可写为:
另外也可用角频率来表示:
其中是窗函数,窗函数种类有很多种,会在稍后再做仔细讨论。是待变换的信号。是的傅里叶变换。 随着的改变,窗函数在时间轴上会有位移。经后,信号只留下了窗函数截取的部分做最后的傅里叶变换,所得到的结果为一复数函数,代表着信号随时间与频率变化的大小与相位。
在离散时间的例子,数据会被切割成数个大量的帧,而每组帧通常会互相重叠,避免因切割方式造成边界的误差。而每组帧在各自进行傅里叶变换后所得的复数结果会再进行相加,可得到每个点时间与频率变化的大小与相位。数学上,这样的操作可写为:
相同地,其中是窗函数,是待变换的信号。在这个例子里,m是离散的且ω是连续的,但大部分实际的应用当中,短时距傅里叶变换在电脑中都是以快速傅里叶变换进行计算(见实现方法的快速傅里叶变换),而此时这两个参数都是离散且被量化的。
当只想要得知特定少数的ω,或是短时距傅里叶变换每次窗函数移动m的值,则短时距傅里叶变换可以利用sliding DFT算法更有效地计算出来。
短时距傅里叶变换是可逆的,也就是说原本的信号可以借由反短时距傅里叶变换将短时距傅里叶变换后的信号还原。
其中最广为接受的反短时距傅里叶变换方法是重叠-相加之卷积法,此方法也促成了更多样的信号处理方法。
反短时距傅里叶变换,其数学类似傅里叶变换,但须消除窗函数的作用,首先必须先将窗函数的总面积规模化使得
而从上也可轻易地得出
和
连续傅里叶变换公式如下:
将进行上述的替换:
将积分顺序进行交换:
因此傅里叶变换可以视为某种将所有的短时距傅里叶变换的相位同调部分进行相加。
而反傅里叶变换公式如下:
因此 可以从被复原
或
与上面所列的窗函数的式子进行比较,可得
对反傅里叶变换公式中的来说是不变的
窗函数通常满足下列特性:
常见的窗函数有:方形、三角形、高斯函数等,而短时距傅里叶变换也因窗函数的不同而有不同的名称。而加伯变换,即为窗函数是高斯函数的短时距傅里叶变换,通常没有特别说明的短时距傅里叶变换,即为加伯变换。
当在特殊应用时,窗函数特性的第一点可以不满足,如下图的非对称窗函数,其中。左图为窗函数原本的图形,而在计算短时距傅里叶变换时,需将窗函数转到轴上得出,换言之,欲得到的短时距傅里叶变换的结果需在的时间点才能算出,因此若愈小,即可愈快得结果,此种非对称窗函数可应用在地震波、碰撞侦测...等,需要即时处理的应用。
右图即为方形窗函数的一个例子,其数学定义:
可以随要分析的信号,来调整B的大小(即调整方形窗函数的宽度)。至于B的选择,将会在下面探讨。
短时傅里叶变换可以简化为
反短时傅里叶变换可简化为
其大部分的特性都与傅里叶变换的特性相对应
结果如右图所示,B越大则在频率变化处(t = 10, 20)附近的频率越不准确,即可能会有多个频率成分出现。但同时,其他时间点的能量则较集中;没有如B较小时,频率散开或模糊的情形。
上述也是其中一个小波变换及多分辨率分析作为改进的方向,其中多分辨率分析能在高频时有较好的时间轴解析,而在低频时能有较好的频率轴解析,此种组合较契合许多实际的应用。
时间轴与频率轴的分辨率无法同时提升也与海森堡不确定性原理有关,即时间与频率的标准差乘积有所限制,而高斯函数恰好能符合不确定性原理的极值,也就是两者同时达到最好的分辨率,而应用高斯函数的时频分析方法即为加伯变换,而在经过修改及多分辨率分析后,成为了莫莱小波。
高斯窗函数的短时距傅里叶变换又称为加伯变换。以下是高斯函数的数学定义,
据此,短时傅里叶变换可以写为
三角形窗函数如右图所示,数学定义如下,
可使用在震幅改变的情况下,相对于方形窗函数,可更好的滤除噪声。
海宁函数如右图所示,数学定义如下,
相较于三角形窗函数,海宁窗函数更为贴近现实信号的趋势,可进一步滤除噪声。
汉明窗函如右图所示,数学定义如下,
跟海宁窗函数类似,但两端不为零。
窗函数有四个指标,分别为
因为汉明窗两端不能到零,而海宁窗两端为零。从以上频率响应来看,汉明窗可以有效减少靠近的旁办,但在较远的旁办泄漏比海宁窗严重。
可根据以下条件来选取窗函数,
在决定复杂度跟解析率后,可利用不同的窗函数达到更好的滤噪声效果。
当Nyquist频率是能被有意义分析的频率最大值的限制,而瑞利频率则是能被有限带宽频的窗函数解析的频率最小值的限制。若给定一窗函数的长度是T秒,最低能被解析的频率即为1/T Hz。
瑞利频率在短时距傅里叶变化的应用中扮演重要的角色,像是在分析神经信号时。
Spectrogram即短时傅里叶变换后结果的绝对值平方,两者本质上是相同的,在文献上也常出现spectrogram这个名词。
短时距傅里叶变换及其他工具经常用于分析音乐。
如右图所示,
音频工程师使用这种视觉来获取有关音频样本的信息。
此外,因频率会随时间而改变,短时距也可使用在以下情境,
若与时间无关,如卷积,照片等则不能使用短时距傅里叶变换来进行分析。而影片属于3D信号,其短时距傅里叶产物为6D信号,故也不适用。
从连续短时距傅里叶变化的定义出发
令 ,则上述式子时域可从连续转为离散
若当
上式可改写为
(1)要满足Nyquist criterion
(1)要满足Nyquist criterion
(2) (N可为任意整数)
(3) (做N点傅里叶变换,输入必要<=N)
标准的离散傅里叶变换式子为
由直接运算得知如下公式
因此为了让上式符合离散傅里叶变换的上下界,令代入上式即可得
其中
假设
步骤一:计算
步骤二:
步骤三:决定
步骤四:
步骤五:变换成
步骤六:设,并回到步骤三,直到
借由采样定理可得知
假设及,则经由可得
步骤一:
步骤二:
步骤三:计算
步骤四:利用求得的计算快速傅里叶变换
步骤五:变换到
步骤六:设定,回到步骤三直到
利用FFT计算,其中每次FFT的时间复杂度为
总时间复杂度为
优点:与直接运算相比,复杂度较低
缺点:较多限制,包括
(1)要满足Nyquist criterion
(2)
(3)
(4)需为方形窗函数的短时距傅里叶变换
因为是方形窗函数 ,因此原式可由此关系变成以下式子
而由此可看出n和n-1有递回关系,如下
(1)以FFT计算
(2)利用递回关系式计算算
(1)FFT计算一次
(2)利用递回关系,计算时的数值,因此共会执行T-1次递回,如下式
总时间复杂度
优点:四种运算中,最低的复杂度
缺点:
(1)要满足Nyquist criterion
令
即可由直接运算的式子导出Chirp_Z变换的式子,如下所示
Step1:
Step2:
Step3:
当n为定值时
(1)假设 相乘时间复杂度为2Q+1
(2)令,则 convolution时间复杂度为
(3)相乘时间复杂度为 F
因此,总时间复杂度为
虽然此实现方法和使用FFT计算的时间复杂度相同,但因为convolution相当于做三次FFT,因此实际操作时运算时间约为使用FFT计算的2~3倍
优点:只有一项限制:
缺点:与前四种相比,复杂度是中间的。
将直接法和快速傅里叶变换方法做修正
修正后 :
其中, ,
假设 for ,则上下限可借由以下推导而修正
则上限可以写成,下限则以此类推
注:(输入信号的采样间隔)
(在t轴上的输出信号的采样间隔)
然而,是整数会是比较好的。
则经由上述公式可求得S=441,代表经由unbalanced sampling,我们跟原本相比可减少441倍的采样点。
由于t轴的采样点少了S倍,因此跟原本的直接运算复杂度相比,只要把即可,如下:
复杂度:
(1)
(2) : (只要是整数的倒数即可)
(3) ,的带宽是
i.e. ,当
令
for
for
修正后:
假设
步骤一:计算
步骤二:
步骤三:决定
步骤四:
步骤五:变换
步骤六:设定及返回步骤三,直到
(1) 先用比较大的
(2) 如果发现 和 之间有很大的差异,则在, 之间选用比较小的采样区间
(, 和 皆为整数)
再用Unbalanced Sampling for STFT and WDF 中修正后的快速傅里叶变换方法算出 ,
(3) 以此类推,如果 的差距还是太大,则再选用更小的采样间隔
(, 和 皆为整数)
若有一音乐信号总共有1.6秒,
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.