Remove ads
来自维基百科,自由的百科全书
在数学中,线积分(英语:Line integral)[注 1]是积分的一种。积分函数的取值沿的不是区间,而是被称为积分路径的特定曲线。[注 2]
在曲线积分中,被积的函数可以是标量函数或向量函数。当被积函数是标量函数时,积分的值是积分路径各点上的函数值乘上该点切向量的长度,在被积分函数是向量函数时,积分值是积分向量函数与曲线切向量的内积。在函数是标量函数的情形下,可以把切向量的绝对值(长度)看成此曲线把该点附近定义域的极小区间,在到达域内拉长了切向量绝对值的长度,这也是曲线积分与一般区间上的积分的主要不同点。物理学中的许多简洁公式(例如W=F·s)在推广之后都是以曲线积分的形式出现
。
大致来说,向量分析中的曲线积分可以看成在某一场中沿特定路径的累积效果。更具体地说,如果曲线,标量场的曲线积分可以想成某个曲线(不是)向下切割出的面积,这可以通过建立函数z = f(x,y)和x-y平面内的曲线C来想像这个曲面,可以把平面上的曲线想成屏风的底座,代表在该点屏风的高度(这里假设),则的曲线积分就是该“屏风”的面积,也就是前面所说曲线向下切割的面积,其中是曲线的参数化。
设有标量场:F : U ⊆ Rn R,则对于路径C ⊂ U,F的曲线积分是:
其中,r: [a, b] C 是一个一一对应的参数方程,并且r(a)和r(b)分别是路径曲线C的两个端点。
f称为积分函数,C是积分路径。不严格地说,ds可以被看作积分路径上的一段很小的“弧长”。曲线积分的结果不依赖于参量化函数r。
几何上,当标量场f定义在一个平面(n=2)上时,它的图像是空间中一个曲面z=f(x,y),曲线积分就是以曲线C为界的有符号的截面面积。参见动画演示。
设有向量场:F : U ⊆ Rn Rn,则其在路径C ⊂ U上关于方向r的曲线积分是:
其中,r: [a, b] C 是一个一一的参量化函数,并且r(a)和r(b)分别是路径曲线C的两个端点。这时曲线积分值的绝对值与参量化函数r无关,但其方向与参量化函数r的选择有关。特别地,当方向相反时,积分值也相反。
如果向量场F是一个标量场G的梯度,即:
那么,由G和r组成的复合函数的导数是:
于是对路径C就有:
用文字表示,就是说若F是一个梯度场,那么F的曲线积分与所取的路径无关,而只与路径的起点和终点的选取有关。
在各种保守力的场都是路径无关的,一个常见的例子就是重力场或电场。在计算这种场的做功时,可以选择适当的路径进行积分,使得计算变得简单。
在复分析中,曲线积分是通过复数的加法和乘法定义的。令为复数集 的一个开子集,是一个函数,是一个参数为的可求长曲线,其中。则曲线积分:
可以通过将区间 分划为来定义。考虑下式:
当连续可微时,曲线积分可以用一个实变函数的积分表示:
当为闭合曲线时,积分的起点和终点重合,这时沿的曲线积分通常记作
对于共轭微分算子的曲线积分定义为[1]
复函数的曲线积分有很多技巧。将复函数分作实部和虚部,可以将问题简化为两个实值函数的曲线积分。其它情况下可以用柯西积分公式。如果积分路径是闭合的,并且积分函数在区域中是解析的且没有奇点,那么它的曲线积分是零,这是柯西积分定理的推论。根据留数定理,可以用复平面上的围道积分计算实值函数在实区间上的积分。
考虑复函数,设积分路径为单位圆(模长为1的复数的集合)。我们使用来将路径参数化,其中在内。代入积分式就得到:
用柯西积分定理也可以得到结果。
量子力学中的“曲线积分形式”和曲线积分并不相同,因为曲线积分形式中所用的积分是函数空间上的泛函积分,即关于空间中每个路径的概率函数进行积分。然而,曲线积分在量子力学中仍有重要作用,比如说复围道积分常常用来计算量子散射理论中的概率振幅。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.