Loading AI tools
對一個給定集合的某些子集指定一個數的函數 来自维基百科,自由的百科全书
在数学中,测度是一种将几何空间的度量(长度、面积、体积)和其他常见概念(如大小、质量和事件的概率)广义化后产生的概念。传统的黎曼积分是在区间上进行的,为了把积分推广到更一般的集合上,人们就发展出测度的概念。一个特别重要的例子是勒贝格测度,它从 维欧式空间 出发,概括了传统长度、面积和体积等等的概念。
研究测度的学问被统称为测度论,因为指定的数值通常是非负实数,所以测度论通常会被视为实分析的一个分支,它在数学分析和概率论有重要的地位。
直观上,测度是“体积”的推广;因为空集合的“体积”当然为零,而且互相独立的一群(可数个)物体,总“体积”当然要是所有物体“体积”直接加总(的极限)。而要定义“体积”,必须先要决定怎样的一群子集合,是“可以测量的”,详细请见σ-代数。
若照着上述定义,根据可数可加性,不少母集合本身的测度值会变成无穷大(如对 本身取勒贝格测度),所以实际上不存在。但某些书籍[2]会形式上将无穷大视为一个数,而容许测度取值为无穷大;这样定义的书籍,会把只容许有限实数值的测度称为(非负)有限测度。但这样"定义",会造成可数可加性与数列收敛的定义产生矛盾。
所以要延续体积是一种"度量"的这种直观概念(也就是严谨的定义勒贝格测度),那就必须把σ-代数换成条件比较宽松的半集合环,然后以此为基础去定义一个对应到"体积"的前测度。
更进一步的,如果对测度空间 来说,母集合 可表示为 内的某可测集合序列 的并集:
且 只容许取有限值,则 会被进一步的称为(非负)σ-有限测度。
测度的单调性: 若和为可测集,而且,则。
若为可测集(不必是两两不交的),则集合的并集是可测的,且有如下不等式(“次可列可加性”):
如果还满足并且对于所有的,⊆,则如下极限式成立:
若为可测集,并且对于所有的,⊆,则的交集是可测的。进一步说,如果至少一个的测度有限,则有极限:
如若不假设至少一个的测度有限,则上述性质一般不成立。例如对于每一个,令
这里,全部集合都具有无限测度,但它们的交集是空集。
定义 —
是测度空间,若 且 ,则 被称为零测集(null set )。
若所有零测集的子集都可测,则 称为完备的(complete)。
直观上,因为测度的单调性,只要包含于零测集的集合,也“应该”是零测集,完备测度的定义体现了这个直观的想法。更进一步的,任意测度可以按如下的定理扩展为完备测度:[3]
证明 |
---|
下列是一些测度的例子(顺序与重要性无关)。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.