斐波那契数 (意大利语 :Numero di Fibonacci),又译为菲波拿契数 、菲波那西数 、斐氏数 、黄金分割数、斐波那契数列 。所形成的数列 称为斐波那契数列 (意大利语 :Successione di Fibonacci),又译为菲波拿契数列 、菲波那西数列 、斐氏数列 、黄金分割数列、斐波那契数列 。这个数列是由意大利 数学家 斐波那契 在他的《算盘书》中提出。
此条目
需要补充更多来源 。
(2014年3月25日 )
以斐波那契数为边的正方形拼成的近似的黄金矩形 (1:1.618)
在数学 上,斐波那契数 是以递归 的方法来定义:
F
0
=
0
{\displaystyle F_{0}=0}
F
1
=
1
{\displaystyle F_{1}=1}
F
n
=
F
n
−
1
+
F
n
−
2
{\displaystyle F_{n}=F_{n-1}+F_{n-2}}
(
n
≧
2
{\displaystyle n\geqq 2}
)
用白话文来说,就是斐波那契数列由0和1开始,之后的斐波那契数就是由之前的两数相加而得出。首几个斐波那契数是:
1 、 1 、 2 、 3 、 5 、 8 、 13 、 21 、 34 、 55 、 89 、 144 、 233 、 377 、 610 、 987……(OEIS 数列A000045 )
特别指出 :0 不是第一项,而是第零项(
F
0
{\displaystyle F_{0}}
)。
为求得斐波那契数列的一般表达式,可以借助线性代数的方法。高中的初等数学知识也能求出。
由以上可得:
a
n
+
1
+
α
a
n
=
(
a
2
+
α
a
1
)
β
n
−
1
=
(
1
+
α
)
β
n
−
1
=
β
n
{\displaystyle {\begin{aligned}a_{n+1}+\alpha a_{n}&=(a_{2}+\alpha a_{1})\beta ^{n-1}\\&=(1+\alpha )\beta ^{n-1}\\&=\beta ^{n}\\\end{aligned}}}
变形得:
a
n
+
1
β
n
+
1
+
α
β
⋅
a
n
β
n
=
1
β
{\displaystyle {\frac {a_{n+1}}{\beta ^{n+1}}}+{\frac {\alpha }{\beta }}\cdot {\frac {a_{n}}{\beta ^{n}}}={\frac {1}{\beta }}}
。
令
b
n
=
a
n
β
n
{\displaystyle b_{n}={\frac {a_{n}}{\beta ^{n}}}}
(
F
n
+
2
F
n
+
1
)
=
(
1
1
1
0
)
⋅
(
F
n
+
1
F
n
)
{\displaystyle {\begin{pmatrix}F_{n+2}\\F_{n+1}\end{pmatrix}}={\begin{pmatrix}1&1\\1&0\end{pmatrix}}\cdot {\begin{pmatrix}F_{n+1}\\F_{n}\end{pmatrix}}}
(
F
n
+
2
F
n
+
1
F
n
+
1
F
n
)
=
(
1
1
1
0
)
n
+
1
{\displaystyle {\begin{pmatrix}F_{n+2}&F_{n+1}\\F_{n+1}&F_{n}\end{pmatrix}}={\begin{pmatrix}1&1\\1&0\end{pmatrix}}^{n+1}}
根据特征值的计算公式 ,我们需要算出来
|
−
λ
1
1
1
−
λ
|
=
0
{\displaystyle {\begin{vmatrix}-\lambda &1\\1&1-\lambda \\\end{vmatrix}}=0}
所对应的解。
展开行列式有:
−
λ
(
1
−
λ
)
−
1
×
1
=
λ
2
−
λ
−
1
{\displaystyle -\lambda (1-\lambda )-1\times 1=\lambda ^{2}-\lambda -1}
。
故当行列式的值为 0,解得
λ
1
=
1
2
(
1
+
5
)
{\displaystyle \lambda _{1}={\frac {1}{2}}(1+{\sqrt {5}})}
或
λ
2
=
1
2
(
1
−
5
)
{\displaystyle \lambda _{2}={\frac {1}{2}}(1-{\sqrt {5}})}
。
将两个特征值代入
(
(
0
1
1
1
)
−
λ
⋅
E
)
⋅
x
→
=
0
{\displaystyle \left({\begin{pmatrix}0&1\\1&1\end{pmatrix}}-\lambda \cdot E\right)\cdot {\vec {x}}=0}
求特征向量
x
→
{\displaystyle {\vec {x}}}
得
x
→
1
{\displaystyle {\vec {x}}_{1}}
=
(
1
1
2
(
1
+
5
)
)
{\displaystyle {\begin{pmatrix}1\\{\frac {1}{2}}(1+{\sqrt {5}})\end{pmatrix}}}
x
→
2
{\displaystyle {\vec {x}}_{2}}
=
(
1
1
2
(
1
−
5
)
)
{\displaystyle {\begin{pmatrix}1\\{\frac {1}{2}}(1-{\sqrt {5}})\end{pmatrix}}}
F
n
=
∑
i
=
0
∞
(
n
−
i
i
)
{\displaystyle F_{n}=\sum _{i=0}^{\infty }{\binom {n-i}{i}}}
[ 1]
F
n
−
1
+
F
n
=
∑
i
=
0
∞
(
n
−
1
−
i
i
)
+
∑
i
=
0
∞
(
n
−
i
i
)
=
1
+
∑
i
=
1
∞
(
n
−
i
i
−
1
)
+
∑
i
=
1
∞
(
n
−
i
i
)
=
1
+
∑
i
=
1
∞
(
n
+
1
−
i
i
)
=
∑
i
=
0
∞
(
n
+
1
−
i
i
)
=
F
n
+
1
{\displaystyle F_{n-1}+F_{n}=\sum _{i=0}^{\infty }{\binom {n-1-i}{i}}+\sum _{i=0}^{\infty }{\binom {n-i}{i}}=1+\sum _{i=1}^{\infty }{\binom {n-i}{i-1}}+\sum _{i=1}^{\infty }{\binom {n-i}{i}}=1+\sum _{i=1}^{\infty }{\binom {n+1-i}{i}}=\sum _{i=0}^{\infty }{\binom {n+1-i}{i}}=F_{n+1}}
可通过编程观察斐波那契数列。分为两类问题,一种已知数列中的某一项,求序数。第二种是已知序数,求该项的值。
可通过递归 递推 的算法解决此两个问题。
事实上当
n
{\displaystyle n}
相当巨大的时候,O(n)的递推/递归非常慢……这时候要用到矩阵快速幂这一技巧,可以使递归加速到O(logn)。
开普勒 发现数列前、后两项之比
1
2
,
2
3
,
3
5
,
5
8
,
8
13
,
13
21
,
21
34
,
⋯
{\displaystyle {\frac {1}{2}},{\frac {2}{3}},{\frac {3}{5}},{\frac {5}{8}},{\frac {8}{13}},{\frac {13}{21}},{\frac {21}{34}},\cdots }
,也组成了一个数列,会趋近黄金分割 :
f
n
+
1
f
n
≈
a
=
1
2
(
1
+
5
)
=
φ
≈
1
.
618
.
.
.
{\displaystyle {\frac {f_{n+1}}{f_{n}}}\approx a={\frac {1}{2}}(1+{\sqrt {5}})=\varphi \approx 1{.}618{...}}
斐波那契数亦可以用连分数 来表示:
1
1
=
1
2
1
=
1
+
1
1
3
2
=
1
+
1
1
+
1
1
5
3
=
1
+
1
1
+
1
1
+
1
1
8
5
=
1
+
1
1
+
1
1
+
1
1
+
1
1
{\displaystyle {\frac {1}{1}}=1\qquad {\frac {2}{1}}=1+{\frac {1}{1}}\qquad {\frac {3}{2}}=1+{\frac {1}{1+{\frac {1}{1}}}}\qquad {\frac {5}{3}}=1+{\frac {1}{1+{\frac {1}{1+{\frac {1}{1}}}}}}\qquad {\frac {8}{5}}=1+{\frac {1}{1+{\frac {1}{1+{\frac {1}{1+{\frac {1}{1}}}}}}}}}
F
n
=
1
5
[
(
1
+
5
2
)
n
−
(
1
−
5
2
)
n
]
=
φ
n
5
−
(
1
−
φ
)
n
5
{\displaystyle F_{n}={\frac {1}{\sqrt {5}}}\left[\left({\frac {1+{\sqrt {5}}}{2}}\right)^{n}-\left({\frac {1-{\sqrt {5}}}{2}}\right)^{n}\right]={\varphi ^{n} \over {\sqrt {5}}}-{(1-\varphi )^{n} \over {\sqrt {5}}}}
而黄金分割数亦可以用无限连分数表示:
φ
=
1
+
1
1
+
1
1
+
1
1
+
1
1
+
.
.
.
{\displaystyle \varphi =1+{\frac {1}{1+{\frac {1}{1+{\frac {1}{1+{\frac {1}{1+...}}}}}}}}}
而黄金分割数也可以用无限多重根号表示:
φ
=
1
+
1
+
1
+
1
+
.
.
.
{\displaystyle \varphi ={\sqrt {1+{\sqrt {1+{\sqrt {1+{\sqrt {1+...}}}}}}}}}
更多信息:自然界的图案
参见:Golden ratio#Nature
春黄菊 的头状花序 上,小花呈螺旋状排列,从不同方向可以数出21(深蓝)和13(浅蓝)条旋臂,为相邻的斐氏数。类似的螺旋状排列见于多种植物。
斐氏数列见于不同的生物学现象[ 2] ,如树的分枝、叶在枝条上的排列 、菠萝聚花果 上小单果的排列、[ 3] 雅枝竹 的花蕾、正在舒展的蕨叶、松球 的鳞的排列[ 4] 、蜜蜂的家族树[ 5] [ 6] 。开普勒 曾指出斐氏数列存在于自然界,并以此解释某些花的五边形形态(与黄金分割率 相关)。法国菊 的“瓣”(舌状花)数通常为斐氏数。1830年,K. F. Schimper和A. Braun发现植物的旋生叶序中,连续两块叶之间转过的角度与周角之比,约成整数比时,常出现斐氏数[ 9] ,如
2
/
5
{\displaystyle 2/5}
或
5
/
13
{\displaystyle 5/13}
[ 10] 。
资料来源: [ 11]
证明以下的恒等式有很多方法。以下会用组合论述 来证明。
F
n
{\displaystyle F_{n}}
可以表示用多个1和多个2相加令其和等于
n
{\displaystyle n}
的方法的数目。
不失一般性 ,我们假设
n
≥
1
{\displaystyle n\geq 1}
,
F
n
+
1
{\displaystyle F_{n+1}}
是计算了将1和2加到n的方法的数目。若第一个被加数是1,有
F
n
{\displaystyle F_{n}}
种方法来完成对
n
−
1
{\displaystyle n-1}
的计算;若第一个被加数是2,有
F
n
−
1
{\displaystyle F_{n-1}}
来完成对
n
−
2
{\displaystyle n-2}
的计算。因此,共有
F
n
+
F
n
−
1
{\displaystyle F_{n}+F_{n-1}}
种方法来计算n的值。
F
0
+
F
1
+
F
2
+
F
3
+
.
.
.
+
F
n
=
F
n
+
2
−
1
{\displaystyle F_{0}+F_{1}+F_{2}+F_{3}+...+F_{n}=F_{n+2}-1}
计算用多个1和多个2相加令其和等于
n
+
1
{\displaystyle n+1}
的方法的数目,同时至少一个加数是2的情况。
如前所述,当
n
>
0
{\displaystyle n>0}
,有
F
n
+
2
{\displaystyle F_{n+2}}
种这样的方法。因为当中只有一种方法不用使用2,就即
1
+
1
+
.
.
.
+
1
{\displaystyle 1+1+...+1}
(
n
+
1
{\displaystyle n+1}
项),于是我们从
F
n
+
2
{\displaystyle F_{n+2}}
减去1。
若第1个被加数是2,有
F
n
{\displaystyle F_{n}}
种方法来计算加至
n
−
1
{\displaystyle n-1}
的方法的数目;
若第2个被加数是2、第1个被加数是1,有
F
n
−
1
{\displaystyle F_{n-1}}
种方法来计算加至
n
−
2
{\displaystyle n-2}
的方法的数目。
重复以上动作。
若第
n
+
1
{\displaystyle n+1}
个被加数为2,它之前的被加数均为1,就有
F
0
{\displaystyle F_{0}}
种方法来计算加至0的数目。
若该数式包含2为被加数,2的首次出现位置必然在第1和
n
+
1
{\displaystyle n+1}
的被加数之间。2在不同位置的情况都考虑到后,得出
F
n
+
F
n
−
1
+
.
.
.
+
F
0
{\displaystyle F_{n}+F_{n-1}+...+F_{0}}
为要求的数目。
F
1
+
2
F
2
+
3
F
3
+
.
.
.
+
n
F
n
=
n
F
n
+
2
−
F
n
+
3
+
2
{\displaystyle F_{1}+2F_{2}+3F_{3}+...+nF_{n}=nF_{n+2}-F_{n+3}+2}
F
1
+
F
3
+
F
5
+
.
.
.
+
F
2
n
−
1
=
F
2
n
{\displaystyle F_{1}+F_{3}+F_{5}+...+F_{2n-1}=F_{2n}}
F
2
+
F
4
+
F
6
+
.
.
.
+
F
2
n
=
F
2
n
+
1
−
1
{\displaystyle F_{2}+F_{4}+F_{6}+...+F_{2n}=F_{2n+1}-1}
F
1
2
+
F
2
2
+
F
3
2
+
.
.
.
+
F
n
2
=
F
n
F
n
+
1
{\displaystyle {F_{1}}^{2}+{F_{2}}^{2}+{F_{3}}^{2}+...+{F_{n}}^{2}=F_{n}F_{n+1}}
F
n
F
m
−
k
−
F
m
F
n
−
k
=
(
−
1
)
n
−
k
F
m
−
n
F
k
{\displaystyle F_{n}F_{m-k}-F_{m}F_{n-k}=(-1)^{n-k}F_{m-n}F_{k}}
,其中
m
,
n
,
k
{\displaystyle m,n,k}
与
F
{\displaystyle F}
的序数皆不限于正整数。[ 注 2]
特别地,当
n
=
m
−
k
{\displaystyle n=m-k}
时,
F
n
2
−
F
n
+
k
F
n
−
k
=
(
−
1
)
n
−
k
F
k
2
{\displaystyle {F_{n}}^{2}-F_{n+k}F_{n-k}=(-1)^{n-k}{F_{k}}^{2}}
更特别地,当
k
=
1
{\displaystyle k=1}
或
k
=
−
1
{\displaystyle k=-1}
时,对于数列连续三项,有
F
n
2
−
F
n
−
1
F
n
+
1
=
(
−
1
)
n
−
1
{\displaystyle {F_{n}}^{2}-F_{n-1}F_{n+1}=(-1)^{n-1}}
另一方面,当
(
m
,
n
,
k
)
=
(
n
+
1
,
n
,
−
2
)
{\displaystyle (m,n,k)=(n+1,n,-2)}
时,对于数列连续四项,有
F
n
F
n
+
3
−
F
n
+
1
F
n
+
2
=
(
−
1
)
n
+
1
{\displaystyle F_{n}F_{n+3}-F_{n+1}F_{n+2}=(-1)^{n+1}}
[ 注 3]
φ
n
=
F
n
−
1
+
φ
F
n
{\displaystyle \varphi ^{n}=F_{n-1}+\varphi F_{n}}
且
(
1
−
φ
)
n
=
F
n
+
1
−
φ
F
n
{\displaystyle (1-\varphi )^{n}=F_{n+1}-\varphi F_{n}}
,其中
φ
{\displaystyle \varphi }
为黄金比例
1
+
5
2
{\displaystyle {\frac {1+{\sqrt {5}}}{2}}}
,
n
{\displaystyle n}
为任意整数[ 注 1]
借由上述公式,又可推得以下恒等式[ 注 4] :
在斐波那契数列中,有素数 :[ 12]
2, 3, 5, 13, 89, 233, 1597, 28657, 514229, 433494437, 2971215073, 99194853094755497, 1066340417491710595814572169, 19134702400093278081449423917……
截至2015年,已知最大的斐波那契素数是第104911个斐波那契数,一共有21925个十进制位。不过,人们仍不知道是不是有无限个斐波那契素数。[ 13]
如§ 公约数和整除关系 所述,
F
k
n
{\displaystyle F_{kn}}
总能被
F
n
{\displaystyle F_{n}}
整除,故除
F
4
=
3
{\displaystyle F_{4}=3}
之外,任何斐氏素数的下标必同为素数。由于存在任意长 的一列连续合数 ,斐氏数列中亦能找到连续任意多项全为合数。
大于
F
6
=
8
{\displaystyle F_{6}=8}
的斐氏数,必不等于素数加一或减一。[ 14]
斐波那契数列中,只有3个平方数 :0 、1 、144 。[ 15] [ 16] 2001年,派特·奥蒂洛 证明,斐氏数中的次方数 只有有限多个。[ 17] 2006年,Y. Bugeaud、M. Mignotte、S. Siksek三人证明,斐波那契数中的次方数只有0、1、8、144。[ 18]
1、3、21、55为仅有的斐氏三角形数 。Vern Hoggatt 曾猜想此结论,后来由罗明证明。[ 19]
斐波那契数不能为完全数 。[ 20] 推而广之,除1之外,其他斐氏数皆非多重完全数 [ 21] ,任两个斐氏数之比亦不能是完全数[ 22] 。
斐波那西数列是斐波那西n步数列 步数为2的特殊情况,也和卢卡斯数 列有关。
反费波那西数列的递归公式如下:
G
n
+
2
=
G
n
−
G
n
+
1
{\displaystyle G_{n+2}=G_{n}-G_{n+1}}
如果它以1,-1开始,之后的数是:1,-1,2,-3,5,-8, ...
即是
F
2
n
+
1
=
G
2
n
+
1
=
F
−
(
2
n
+
1
)
,
F
2
n
=
−
G
2
n
=
−
F
−
2
n
{\displaystyle F_{2n+1}=G_{2n+1}=F_{-(2n+1)},F_{2n}=-G_{2n}=-F_{-2n}}
,
亦可写成
F
m
=
(
−
1
)
m
+
1
G
m
=
(
−
1
)
m
+
1
F
−
m
{\displaystyle F_{m}=(-1)^{m+1}G_{m}=(-1)^{m+1}F_{-m}}
,其中
m
{\displaystyle m}
是非负整数。
反费波那西数列两项之间的比会趋近
−
1
φ
≈
−
0.618
{\displaystyle -{\frac {1}{\varphi }}\approx -0.618}
。
费波那西数列可以用一个接一个的正方形来表现,巴都万数列 则是用一个接一个的等边三角形来表现,它有
P
n
=
P
n
−
2
+
P
n
−
3
{\displaystyle P_{n}=P_{n-2}+P_{n-3}}
的关系。
佩尔数列 的递归公式为
P
n
=
2
P
n
−
1
+
P
n
−
2
{\displaystyle P_{n}=2P_{n-1}+P_{n-2}}
,前几项为0,1,2,5,12,29,70,169,408,...
1970年,尤里·马季亚谢维奇 指出了偶角标的斐波那契函数
y
=
F
2
x
{\displaystyle y=F_{2x}}
正是满足Julia Robison假设的丢番图函数 ,因而证明了希尔伯特第十问题 是不可解的。