截角超立方体有24个:8个截角立方体,和16个正四面体

Quick Facts 截角超立方体, 类型 ...
截角超立方体
Thumb
施莱格尔投影
(可以看见正四面体胞)
类型均匀多胞体
识别
名称截角超立方体
参考索引12 13 14
数学表示法
考克斯特符号
英语Coxeter-Dynkin diagram
node_1 4 node_1 3 node 3 node 
施莱夫利符号t0,1{4,3,3}
性质
24
8 3.8.8
16 3.3.3
88
64 {3}
24 {8}
128
顶点64
组成与布局
顶点图Thumb
Isosceles triangular pyramid
对称性
考克斯特群BC4, [4,3,3], order 384
特性
convex
Close

坐标

截角超立方体可以通过在每条棱距离顶点处截断超立方体的每一个角来得到。每个截断的角会产生一个正四面体

一个棱长为2的截角超立方体的每个顶点的笛卡儿坐标系坐标为:

投影

More information 考克斯特平面, B4 ...
正交投影
考克斯特平面 B4 B3 / D4 / A2 B2 / D3
Graph Thumb Thumb Thumb
二面体群 [8] [6] [4]
考克斯特平面 F4 A3
Graph Thumb Thumb
二面体群 [12/3] [4]
Close
Thumb
展开图
Thumb
三维正交投影

参考文献

  • T. Gosset: On the Regular and Semi-Regular Figures in Space of n Dimensions, Messenger of Mathematics, Macmillan, 1900
  • H.S.M. Coxeter:
    • Coxeter, Regular Polytopes, (3rd edition, 1973), Dover edition, ISBN 0-486-61480-8, p. 296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5)
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973, p. 296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5)
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]页面存档备份,存于互联网档案馆
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 26. pp. 409: Hemicubes: 1n1)
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. (1966)
  • 2. Convex uniform polychora based on the tesseract (8-cell) and hexadecachoron (16-cell) - Models 13, 16, 17, George Olshevsky.
  • Klitzing, Richard. 4D uniform polytopes (polychora). bendwavy.org. o3o3o4o - tat, o3x3x4o - tah, x3x3o4o - thex


外部链接

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.