在数学中,康托尔集Cantor set)由德国数学家格奥尔格·康托尔在1883年引入[1][2](但由亨利·约翰·斯蒂芬·史密斯英语Henry John Stephen Smith在1875年发现[3][4][5][6]),是位于一条线段上的一些点的集合,具有许多显著和深刻的性质。通过考虑这个集合,康托尔和其他数学家奠定了现代点集拓扑学的基础。虽然康托尔自己用一种一般、抽象的方法定义了这个集合,但是最常见的构造是康托尔三分点集,由去掉一条线段的中间三分之一得出。康托尔自己只附带介绍了三分点集的构造,作为一个更加一般的想法——一个无处稠密完备集的例子。

Thumb
一种像康托尔集图案的柱头。Jollois, Jean-Baptiste Prosper; Devilliers, Edouard, Description d'Egypte, Paris: Imprimerie Imperiale, 1809-1828 菲莱岛雕塑

康托尔集的构造

康托尔集是由不断去掉线段的中间三分之一的开集而得出。首先从区间中去掉中间的三分之一,留下两条线段:。然后,把这两条线段的中间三分之一都去掉,留下四条线段:。康托尔集就是由所有过程中没有被去掉的区间中的点组成。这个过程可以由递归的方法描述,首先令:

则第步递归得到的结果:

, 对于

所以:

, 对于 .

下面的图显示了这个过程的最初六个步骤。

Thumb

有些学术论文详细描述了康托尔集的明确公式。[7][8]

参见

注释

参考文献

外部链接

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.