N维随机向量
如果服从多变量正态分布,必须满足下面的三个等价条件:
- 任何线性组合
服从正态分布。
- 存在随机向量
( 它的每个元素服从独立标准正态分布),向量
及
矩阵
满足
.
- 存在
和一个对称半正定阵
满足
的特征函数

如果
是非奇异的,那么该分布可以由以下的概率密度函数来描述:[1]

注意这里的
表示协方差矩阵的行列式。
- 二元的情况
在二维非奇异的情况下(k = rank(Σ) = 2),向量 [X Y]′ 的概率密度函数为:
![{\displaystyle f(x,y)={\frac {1}{2\pi \sigma _{X}\sigma _{Y}{\sqrt {1-\rho ^{2}}}}}\mathrm {e} ^{-{\frac {1}{2(1-\rho ^{2})}}\left[({\frac {x-\mu _{X}}{\sigma _{X}}})^{2}-2\rho ({\frac {x-\mu _{X}}{\sigma _{X}}})({\frac {y-\mu _{Y}}{\sigma _{Y}}})+({\frac {y-\mu _{Y}}{\sigma _{Y}}})^{2}\right]}}](//wikimedia.org/api/rest_v1/media/math/render/svg/ad843d4d9fdc51ab1e09c7ffd01d2c3a6285f6b1)
其中 ρ 是 X 与 Y 之间的相关系数,
且
。在这种情况下,
