Loading AI tools
假说 来自维基百科,自由的百科全书
在行星科学和天体生物学中,稀有地球假说或称地球殊异假说(英语:Rare Earth hypothesis)认为地球上多细胞生物的形成需要不同寻常的天体物理及地质事件和环境的结合。“地球殊异”(Rare Earth)这一词来自于一本由彼得·D·沃德和唐纳德·E·布朗尼[1]所著的《地球殊异:为何复杂生命在宇宙中并不普遍?》(Rare Earth: Why Complex Life Is Uncommon in the Universe,台湾译名:“地球是孤独的:从天文物理学、太空生物学、行星科学探索生命诞生之谜”,另译“珍稀地球”)一书。
地球殊异假说是与卡尔·萨根及法兰克·德雷克提出的平庸原理恰恰相反的概念。平庸原理认为地球只是位于普通的棒旋星系非异常区域内的一个普通的行星系统中的一颗普通的岩石行星,因此整个宇宙中充斥着复杂生命。瓦尔德等人却指出像地球、太阳系和我们位于银河系的区域这样拥有适宜复杂生命生存的行星、行星系统和星系区域是非常稀少的。
地球殊异假说指出复杂生命的形成需要多种偶发条件的结合。这些条件包括了星系适居带、拥用类似条件的行星系统、行星大小、拥有一颗巨大天然卫星(比如月球)的有利条件、行星拥有磁圈和相应的板块运动、岩石圈、大气圈以及海洋、巨大冰川及小行星撞击等作用和影响。
相同的,以尺度和几率的角度与视野来观察,地球属于适居带的行星,拥有且满足一切生物物种维持生命、生存和演化的所有条件,然而事实上从地球历史中的显生宙开始至今,在这长达五亿多年的岁月间和数百万的生物物种中,只有一个物种成功的演化成为高等智慧生命——“人类”,而非多种多元的高等智慧生物并存于地球上,这显示了在“相同条件”下,“高等智慧生命”并非如此的轻易出现和存在。同地球殊异假说一般,这或许能为费米悖论提供一个答案。[2]
地球殊异假说指出宇宙,包括我们银河系的大部分区域不能支持地球类型的复杂生命,即瓦尔德等人所说的死亡带(Dead Zones)。适居带和到银心的距离也具有很大的关联。距离银心的差异:
以上(1)排除了星系的外围,(2)和(3)排除了星系的内部区域、球状星团和螺旋星系的螺旋臂。这些螺旋臂不是客观的物体,而是以恒星形成率高为特征的区域,波浪式地在星系内缓缓移动。在其从星系中心移到它最远的极端的过程中,支持生命的能力增强接着又减弱。
即使某个行星系统处在适宜复杂生命生存的地域,它必须维持在那相当长的时间以便复杂生命能够进化。如果恒星的轨道成椭圆形,它将会通过星系的一些螺旋臂。但如果恒星的轨道成圆形,它的公转速度和螺旋臂的旋转速度相等,因此恒星只会缓慢进入螺旋臂区域。所以地球殊异假说的倡议者指出一颗能孕育生命的恒星必须要有一条近乎圆形的围绕银心运转的轨道。
Lineweaver等人[3]计算后得出银河系适居带的直径为7到9千秒差距,只容纳银河系中不超过10%的恒星。根据对银河系所有恒星数量的保守估计,这个数字大约是200到400亿颗恒星。但是Gonzalez等人[4]估计出的数字却只有上述的一半;也就是银河系中最多5%的恒星是位于适居带。
太阳围绕银心运转的轨道几乎接近圆形。太阳的公转周期是2.26亿年,和银河系的旋转周期也非常相近。凯伦·玛斯特斯(Karen Masters)计算得出每经过一亿年的时光,太阳的公转将使其通过银河系的一条主要的螺旋臂。与之相反,地球殊异假说推测自从太阳形成之后,没有通过任何银河系的螺旋臂[5]。但是部分研究显示一些大灭绝事件和以往太阳通过银河系的螺旋臂相符[6]。
形成地球类型的复杂生命需要液态水。行星的适居带是以主恒星为中心的环型区域。如果行星距离主星太远或太近,它的表面温度将不具有产生液态水的条件(虽然在多样的距离内,产生如木卫二一般的地表下水分是有可能的)。卡斯廷(Kasting)等人估计太阳系的适居带介于0.95至1.15个天文单位之间[7]。
适居带会随着主星的类型和年龄而产生变化。适居带和二氧化碳引起的温室效应密切相关,地球上二氧化碳的含量足以将地球表面的平均温度(从它原本的温度)提高30℃[8]。
假定恒星在其适居带内有一颗岩石行星,像天狼星或织女星等热恒星的适居带很辽阔,但存在两个问题:
这些想法排除了赫罗图上F5或O类型等巨大、高能量的恒星孕育多细胞生命的可能性。
另一方面,体积小的红矮星拥有小半径的适居带。这造成其行星的一面总是对着主恒星,而另一面总是保持黑暗,这种情形被称为潮汐锁定。潮汐锁定的结果是行星的一面异常炎热而另一面异常寒冷。另外,位于小半径的适居带内的行星会受到主恒星耀斑的影响,使其大气层被电离化,从而危害复杂生命的生存。地球殊异假说的倡议者排除了这样的行星系统拥有生命的可能性。然而一些天体生物学者认为这些行星系统在少数情况下存在适居的可能。这是理论上的主要争议点,因为这些K到M类型的恒星占所有热核反应恒星总数的82%[9]。
地球殊异假说的倡议者认为恰到好处的主恒星的类型介乎F7到K1之间,这样的恒星是不常见的。像太阳这样G类型的恒星(介于温度更高的F类型和温度更低的K类型之间)只占银河系中热核反应恒星总数的9%[9]。
老龄的恒星,比如红巨星和白矮星都不太可能支持生命。在球状星团和椭圆星系内,红巨星是很常见的。白矮星则是经过了红巨星阶段的濒临死亡的恒星。一颗恒星在变成红巨星之后,它的直径会大幅度增加。假设某行星在其母星尚处于中青年阶段时位于适居带,那么当它的母星成为红巨星之后,它将会被母星蒸发掉。
恒星在其生命周期中的能量释放只应是非常缓慢地变化的。变星,比如造父变星,支持生命的可能性极小。如果主恒星的能量释放突然减少,行星上的水会冻结。反之,如果主恒星的能量释放大幅增加,行星上的海洋会蒸发,造成温室效应。
没有复杂的化学成分就无法造就生命,而这些化学成分必须包含金属,即氢、氦和锂之外的其他元素。这意味着一个含有丰富金属的行星系统是生命存在的必要条件。过去我们所知的能制造金属并使其散之于宇宙中的机制是超新星的爆炸,2017年8月17日LIGO侦测到1.3亿光年外GW170817中子星对撞重力波,后续观察证实中子星对撞的千级新星能产生比铁更重的重金属原子。恒星中金属的存在可以由吸收光谱来判定,研究发现许多甚至大部分的恒星都缺乏金属。早期的宇宙、球状星团、在宇宙初期形成的恒星、位于螺旋星系以外的其他星系中的恒星以及所有位于星系的外围区域内的恒星均以低金属量为特征。因此人们相信金属量充足、能支持复杂生命生存的主恒星普遍位于大螺旋星系的安静的边沿区域,那里远离了银心的高辐射[10],这也是其支持生命的另一缘由。
能孕育恒星的星云同样也能孕育出类似于木星和土星的低金属气体行星。但类木行星没有复杂生命生存所需的固体表面(虽然它们的卫星可能具有固体表面)。瓦尔德和布朗尼认为支持复杂生命生存的行星系统应或多或少类似我们的太阳系,包括拥有固体表面的内行星和气态的外行星。但最近的研究对这种看法表示质疑。
在瓦尔德和布朗尼成书的时候,对类木行星的看法是它们能够使小行星远离孕育生命的行星,使它们免遭小行星的撞击。但是新近的电脑模拟显示实际情况更为复杂。比起被木星阻止的小行星撞击数量,它所引发的小行星撞击次数更是三倍以上。如把木星换成土星大小的天体,则大约引发两倍的小行星撞击次数。
气体行星不能太靠近一颗孕育生命的天体,除非该天体是它的卫星,否则气体行星会妨碍那颗天体的公转。此外,气体行星数量越多、质量越大,造成的不确定性影响也会越大。
牛顿运动能造成行星公转混乱,特别是在一个有高轨道离心率的巨大气体行星的行星系统中[11]。
出于稳定公转的因素的考虑,拥有近距离围绕母星公转的巨大气体行星(称之为“热木星”)的行星系统被排除适居的可能。人们相信在热木星形成时它们距离母星比现在远得多,但随后迁移到当前的公转轨道。在此过程中,它们可能已灾难性地妨碍了所有位于适居带内的行星的公转轨道[12]。
一颗体积过小的行星不能维持足够的大气层及拥有大面积的海洋。它更倾向于拥有崎岖的地表,比如高山和深谷。它们的地核会迅速冷却。它们的板块运动也无法像大的行星那样维持长久或者完全没有板块运动[13]。
根据亚利桑那大学的天文学家麦克尔·梅尔(Michael Meyer),像地球这样的岩石行星在宇宙中可能是普遍的:
我们的观测显示在20%到60%的类似太阳的恒星中,有证据表明其岩石行星的形成过程和形成地球的过程无不相似之处,这是非常令人兴奋的。
— 麦克尔·梅尔[14]
麦克尔所在的研究小组在新形成的类似太阳的恒星附近发现宇宙尘埃,他们把这看作是形成岩石行星的副产品。
在太阳系中,像月球这样的天然卫星并不寻常,因为在地球以外的其他岩石行星之中有的没有自己的卫星(比如水星和金星),而有的只拥有很小的天然卫星(比如火星)。
大碰撞说推测月球的形成是一颗具有火星大小的天体和早期的地球相撞的结果,该撞击给予了地球转轴倾角及自转速度[15]。快速的自转减少了地球每日的气温变化率并使光合作用维持下去。地球殊异假说进一步指出转轴倾角(相对于轨道平面)既不能过大也不能过小。一颗转轴倾角过大的行星会遭遇极端的气候季节性变化。反之,一颗转轴倾角过小的行星则缺乏促进生命演化的季节性变化。就这一点上来说地球是“恰到好处”。巨大的天然卫星的重力作用还可以稳定行星的转轴倾角。要是没有这种作用,转轴倾角的变化将是很混乱的,可能造成陆地上无法诞生复杂生命[16]。
如果地球没有月球这样的天然卫星,仅靠太阳的重力作用,海洋的潮汐变化将很小。
行星的巨大天然卫星可以通过潮汐力对行星地壳的作用增加行星上板块运动的可能性。另外在缺乏非均匀性地壳的情况下也可能不会产生引起板块运动所需的大规模地幔对流。但是有来自火星的证据表明,即使没有上述机制的作用,以前在火星上仍存在过板块运动。
如果巨大天体的撞击是行星获得巨大天然卫星的唯一方式,那么处在环绕恒星的适居带内的行星就需要构成一个双行星系统以便撞击天体具备足够大能造就巨大天然卫星的条件。像这样的撞击天体也未必能够形成。
除非行星的化学构成使板块运动成为可能,行星上不会发生任何的板块活动。目前所知的板块运动所需的持久热能是来自行星内部深层的辐射。行星上的大陆也必是由漂浮在更稠密的玄武岩之上的花岗岩所构成。泰勒(Taylor)[17]强调俯冲带(板块运动的必要部分)需要丰富水源的润滑作用。在地球上,俯冲带只存在于海洋的底部。
许多证据表明寒武纪大爆发时期大陆漂移非常频繁。事实上,大陆能在不到1,500万年的时间内从北极移到赤道或从赤道移到北极。Kirschvink等人[18]提出了以下有争议的见解:相对于自转轴的大陆质量的分布不均衡导致地球自转轴90°变化。这种结果造成气候和洋流在短期内发生剧烈变化并影响整个地球。他们把这称之为“惯性交替事件”(Inertial Interchange Event),这种情形尚未被科学所证明,如果真发生了也是极不寻常。假如这样的事件是比多孔动物门和珊瑚礁更复杂的生物发展所需要的,我们有了另一个为何复杂生物在宇宙中不多见的理由[19]。
以下论述参考了Cramer[20]。瓦尔德和布朗尼由德雷克公式引申出地球殊异公式。根据这一等式,在银河系中拥有复杂生命的类似地球的行星的数量是:
其中:
我们假设。根据地球殊异假说,另外九个地球殊异参数(均为分数)的乘积不会比10−10大,很可能实际值只有10−12。如果是后者的话,的值可能只有0或1那么小。瓦尔德和布朗尼并没有真的计算的值,因为以下的地球殊异参数的值大多只能被估量而已。
地球殊异公式和德雷克公式的不同之处在于它没有将复杂生物进化为拥有技术的智能生物的因素考虑在内(值得一提的是瓦尔德和布朗尼也不是演化生物学家)。
下列书籍(按由易到难排列)拥护地球殊异假说的观点:
对地球殊异假说的批评来自以下不同方面。
截至2018年底,已知的太阳系外行星超过了3,800颗,而且新发现的行星数量还在不断增加。美国卡内基科技大学的天文学家亚伦·博斯(Alan Boss)估计单银河系中的岩石行星就可能有一千亿之多[25]。博思博士相信在这些行星之中有许多存在着简单生命形态并且在银河系中可能存在数以千计的文明。博思博士猜测类似太阳的恒星平均拥有一颗类似地球的行星。
爱丁堡大学的研究人员尝试找出宇宙中究竟有多少智慧文明。研究指出智慧文明可能有数千个[26]。
但是,迄今为止发现的所有系外行星中,只有1颗(Gliese 581 g)与地球类似,因此,类似地球的行星在系外行星中的数量只1/500左右,仍然是十分稀有的。而且,迄今为止发现的所有其他行星系统都与我们的太阳系大相径庭。
地球殊异假说的核心是生物演化:微生物在宇宙中可能很常见但高级生命却未必。西蒙·莫里斯(Simon Conway Morris)是到今为止唯一一位谈到地球殊异假说的演化生物学家。地球殊异假说认为复杂生命只能在类似地球的行星或行星合适的卫星上演化。包括杰克·科恩(Jack Cohen)在内的部分生物学家相信这种假设带有局限性而且是不可想象的,他们把假说视为是一种循环论证。根据天文学家大卫·达林(David Darling)的观点,地球殊异假说既不是假说也不是推测,它只是阐述了地球上的生命是如何发展的[27]。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.