中线定理,又称阿波罗尼奥斯定理,是欧氏几何的定理,表述三角形两边和中线长度关系。它等价于平行四边形恒等式。 此条目没有列出任何参考或来源。 (2022年5月10日) 对任意三角形 △ A B C {\displaystyle \triangle ABC} ,设 I {\displaystyle I} 是线段 B C ¯ {\displaystyle {\overline {BC}}} 的中点, A I ¯ {\displaystyle {\overline {AI}}} 为中线,则有如下关系: A B ¯ 2 + A C ¯ 2 = 2 B I ¯ 2 + 2 A I ¯ 2 {\displaystyle {\overline {AB}}^{2}+{\overline {AC}}^{2}=2{\overline {BI}}^{2}+2{\overline {AI}}^{2}\,} 证明 用莱布尼茨标量函数约简,可以容易导出这性质:只需要在两个平方中引入 I {\displaystyle I} : | A B → | 2 + | A C → | 2 = | A I → + I B → | 2 + | A I → + I C → | 2 {\displaystyle |{\vec {AB}}|^{2}+|{\vec {AC}}|^{2}=\left|{\vec {AI}}+{\vec {IB}}\right|^{2}+\left|{\vec {AI}}+{\vec {IC}}\right|^{2}} 得出 | A B → | 2 + | A C → | 2 = | A I → | 2 + | I B → | 2 + 2 A I → ⋅ I B → + | A I → | 2 + | I C → | 2 + 2 A I → ⋅ I C → {\displaystyle |{\vec {AB}}|^{2}+|{\vec {AC}}|^{2}=|{\vec {AI}}|^{2}+|{\vec {IB}}|^{2}+2{\vec {AI}}\cdot {\vec {IB}}+|{\vec {AI}}|^{2}+|{\vec {IC}}|^{2}+2{\overrightarrow {AI}}\cdot {\overrightarrow {IC}}} I {\displaystyle I} 是 B C {\displaystyle BC} 的中点,因此 I B → {\displaystyle {\overrightarrow {IB}}} 和 I C → {\displaystyle {\overrightarrow {IC}}} 相反,可知式中两个标积抵消。又因 I C ¯ = I B ¯ {\displaystyle {\overline {IC}}={\overline {IB}}} ,得出 A B ¯ 2 + A C ¯ 2 = 2 A I ¯ 2 + 2 I B ¯ 2 {\displaystyle {\overline {AB}}^{2}+{\overline {AC}}^{2}=2{\overline {AI}}^{2}+2{\overline {IB}}^{2}\,} 另一个证法 这可能是阿波罗尼奥斯的证明方法,因为他不知道莱布尼茨函数。证明如下: 设 H {\displaystyle H} 是从 A {\displaystyle A} 到 B C {\displaystyle BC} 的垂足,则 △ B H A {\displaystyle \triangle BHA} 和 △ A H C {\displaystyle \triangle AHC} 是直角三角形。用勾股定理可得 A B ¯ 2 = B H ¯ 2 + A H ¯ 2 {\displaystyle {\overline {AB}}^{2}={\overline {BH}}^{2}+{\overline {AH}}^{2}\,} A C ¯ 2 = A H ¯ 2 + H C ¯ 2 {\displaystyle {\overline {AC}}^{2}={\overline {AH}}^{2}+{\overline {HC}}^{2}\,} A I ¯ 2 = I H ¯ 2 + A H ¯ 2 {\displaystyle {\overline {AI}}^{2}={\overline {IH}}^{2}+{\overline {AH}}^{2}\,} 所以 A B ¯ 2 + A C ¯ 2 = B H ¯ 2 + 2 A H ¯ 2 + H C ¯ 2 {\displaystyle {\overline {AB}}^{2}+{\overline {AC}}^{2}={\overline {BH}}^{2}+2{\overline {AH}}^{2}+{\overline {HC}}^{2}\,} 把 B H {\displaystyle BH} 和 H C {\displaystyle HC} 用 B I {\displaystyle BI} 和 I H {\displaystyle IH} 表达出来(记得 I {\displaystyle I} 是 B C {\displaystyle BC} 的中点,因此 B I = I C {\displaystyle BI=IC} )。注意到虽然现在的情形假设 H {\displaystyle H} 在线段 B I {\displaystyle BI} 上,但其 他情形也可以用这个方法。 B H ¯ = B I ¯ − I H ¯ {\displaystyle {\overline {BH}}={\overline {BI}}-{\overline {IH}}\,} H C ¯ = I C ¯ + I H ¯ = B I ¯ + I H ¯ {\displaystyle {\overline {HC}}={\overline {IC}}+{\overline {IH}}={\overline {BI}}+{\overline {IH}}\,} 代入前式: A B ¯ 2 + A C ¯ 2 = ( B I ¯ − I H ¯ ) 2 + 2 A H ¯ 2 + ( B I ¯ + I H ¯ ) 2 {\displaystyle {\overline {AB}}^{2}+{\overline {AC}}^{2}=({\overline {BI}}-{\overline {IH}})^{2}+2{\overline {AH}}^{2}+({\overline {BI}}+{\overline {IH}})^{2}\,} A B ¯ 2 + A C ¯ 2 = B I ¯ 2 − 2 B I ¯ ⋅ I H ¯ + I H ¯ 2 + 2 A H ¯ 2 + B I ¯ 2 + 2 B I ¯ ⋅ I H ¯ + I H ¯ 2 {\displaystyle {\overline {AB}}^{2}+{\overline {AC}}^{2}={\overline {BI}}^{2}-2{\overline {BI}}\cdot {\overline {IH}}+{\overline {IH}}^{2}+2{\overline {AH}}^{2}+{\overline {BI}}^{2}+2{\overline {BI}}\cdot {\overline {IH}}+{\overline {IH}}^{2}\,} A B ¯ 2 + A C ¯ 2 = 2 B I ¯ 2 + 2 I H ¯ 2 + 2 A H ¯ 2 = 2 B I ¯ 2 + 2 ( I H ¯ 2 + A H ¯ 2 ) {\displaystyle {\overline {AB}}^{2}+{\overline {AC}}^{2}=2{\overline {BI}}^{2}+2{\overline {IH}}^{2}+2{\overline {AH}}^{2}=2{\overline {BI}}^{2}+2({\overline {IH}}^{2}+{\overline {AH}}^{2})\,} △ I H A {\displaystyle \triangle IHA} 是直角三角形(H为 △ A B C {\displaystyle \triangle ABC} 于 B C ¯ {\displaystyle {\overline {BC}}} 之垂足) ,因此 I H ¯ 2 + A H ¯ 2 = A I ¯ 2 {\displaystyle {\overline {IH}}^{2}+{\overline {AH}}^{2}={\overline {AI}}^{2}\,} 代入前式得出 A B ¯ 2 + A C ¯ 2 = 2 B I ¯ 2 + 2 A I ¯ 2 {\displaystyle {\overline {AB}}^{2}+{\overline {AC}}^{2}=2{\overline {BI}}^{2}+2{\overline {AI}}^{2}\,} 设 I {\displaystyle I} 是线段 B C {\displaystyle BC} 的中点,则有 A B → + A C → = 2 A I → {\displaystyle {\vec {AB}}+{\vec {AC}}=2{\vec {AI}}} 用标积表示 A B 2 − A C 2 = 2 B C → ⋅ I H → {\displaystyle AB^{2}-AC^{2}=2{\overrightarrow {BC}}\cdot {\overrightarrow {IH}}} ,其中 H {\displaystyle H} 是 A {\displaystyle A} 到线 B C {\displaystyle BC} 的垂足。 从上得到中线的另一条定理 | A B 2 − A C 2 | = 2 B C × I H {\displaystyle \left|AB^{2}-AC^{2}\right|=2BC\times IH} 。 实际上 A B 2 − A C 2 = ( A B → + A C → ) ⋅ ( A B → − A C → ) = 2 A I → ⋅ ( A B → + C A → ) = 2 A I → ⋅ C B → {\displaystyle AB^{2}-AC^{2}=({\overrightarrow {AB}}+{\overrightarrow {AC}})\cdot ({\overrightarrow {AB}}-{\overrightarrow {AC}})=2{\overrightarrow {AI}}\cdot ({\overrightarrow {AB}}+{\overrightarrow {CA}})=2{\overrightarrow {AI}}\cdot {\overrightarrow {CB}}} A I → {\displaystyle {\overrightarrow {AI}}} 投影在 B C → {\displaystyle {\overrightarrow {BC}}} 上是 H I → {\displaystyle {\overrightarrow {HI}}} ,因而有 A I → ⋅ C B → = H I → ⋅ C B → = B C → ⋅ I H → {\displaystyle {\overrightarrow {AI}}\cdot {\overrightarrow {CB}}={\overrightarrow {HI}}\cdot {\overrightarrow {CB}}={\overrightarrow {BC}}\cdot {\overrightarrow {IH}}} . 这两个共线向量的标积可等于 B C × I H {\displaystyle BC\times IH\,} 或其负数,因此取绝对值。 闭凸集投影定理,中线定理是这定理的证明关键。 平行四边形恒等式 Wikiwand in your browser!Seamless Wikipedia browsing. On steroids.Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.Wikiwand for ChromeWikiwand for EdgeWikiwand for Firefox
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.