Danh sách số nguyên tố
bài viết danh sách Wikimedia From Wikipedia, the free encyclopedia
Bảng này gồm danh sách 1000 số nguyên tố đầu tiên và một số danh sách các số nguyên tố đặc biệt. 1
Một nghìn số nguyên tố đầu tiên
Đây là danh sách một nghìn số nguyên tố đầu tiên.[1][2]
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1–20 | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 | 61 | 67 | 71 |
21–40 | 73 | 79 | 83 | 89 | 97 | 101 | 103 | 107 | 109 | 113 | 127 | 131 | 137 | 139 | 149 | 151 | 157 | 163 | 167 | 173 |
41–60 | 179 | 181 | 191 | 193 | 197 | 199 | 211 | 223 | 227 | 229 | 233 | 239 | 241 | 251 | 257 | 263 | 269 | 271 | 277 | 281 |
61–80 | 283 | 293 | 307 | 311 | 313 | 317 | 331 | 337 | 347 | 349 | 353 | 359 | 367 | 373 | 379 | 383 | 389 | 397 | 401 | 409 |
81–100 | 419 | 421 | 431 | 433 | 439 | 443 | 449 | 457 | 461 | 463 | 467 | 479 | 487 | 491 | 499 | 503 | 509 | 521 | 523 | 541 |
101–120 | 547 | 557 | 563 | 569 | 571 | 577 | 587 | 593 | 599 | 601 | 607 | 613 | 617 | 619 | 631 | 641 | 643 | 647 | 653 | 659 |
121–140 | 661 | 673 | 677 | 683 | 691 | 701 | 709 | 719 | 727 | 733 | 739 | 743 | 751 | 757 | 761 | 769 | 773 | 787 | 797 | 809 |
141–160 | 811 | 821 | 823 | 827 | 829 | 839 | 853 | 857 | 859 | 863 | 877 | 881 | 883 | 887 | 907 | 911 | 919 | 929 | 937 | 941 |
161–180 | 947 | 953 | 967 | 971 | 977 | 983 | 991 | 997 | 1009 | 1013 | 1019 | 1021 | 1031 | 1033 | 1039 | 1049 | 1051 | 1061 | 1063 | 1069 |
181–200 | 1087 | 1091 | 1093 | 1097 | 1103 | 1109 | 1117 | 1123 | 1129 | 1151 | 1153 | 1163 | 1171 | 1181 | 1187 | 1193 | 1201 | 1213 | 1217 | 1223 |
201–220 | 1229 | 1231 | 1237 | 1249 | 1259 | 1277 | 1279 | 1283 | 1289 | 1291 | 1297 | 1301 | 1303 | 1307 | 1319 | 1321 | 1327 | 1361 | 1367 | 1373 |
221–240 | 1381 | 1399 | 1409 | 1423 | 1427 | 1429 | 1433 | 1439 | 1447 | 1451 | 1453 | 1459 | 1471 | 1481 | 1483 | 1487 | 1489 | 1493 | 1499 | 1511 |
241–260 | 1523 | 1531 | 1543 | 1549 | 1553 | 1559 | 1567 | 1571 | 1579 | 1583 | 1597 | 1601 | 1607 | 1609 | 1613 | 1619 | 1621 | 1627 | 1637 | 1657 |
261–280 | 1663 | 1667 | 1669 | 1693 | 1697 | 1699 | 1709 | 1721 | 1723 | 1733 | 1741 | 1747 | 1753 | 1759 | 1777 | 1783 | 1787 | 1789 | 1801 | 1811 |
281–300 | 1823 | 1831 | 1847 | 1861 | 1867 | 1871 | 1873 | 1877 | 1879 | 1889 | 1901 | 1907 | 1913 | 1931 | 1933 | 1949 | 1951 | 1973 | 1979 | 1987 |
301–320 | 1993 | 1997 | 1999 | 2003 | 2011 | 2017 | 2027 | 2029 | 2039 | 2053 | 2063 | 2069 | 2081 | 2083 | 2087 | 2089 | 2099 | 2111 | 2113 | 2129 |
321–340 | 2131 | 2137 | 2141 | 2143 | 2153 | 2161 | 2179 | 2203 | 2207 | 2213 | 2221 | 2237 | 2239 | 2243 | 2251 | 2267 | 2269 | 2273 | 2281 | 2287 |
341–360 | 2293 | 2297 | 2309 | 2311 | 2333 | 2339 | 2341 | 2347 | 2351 | 2357 | 2371 | 2377 | 2381 | 2383 | 2389 | 2393 | 2399 | 2411 | 2417 | 2423 |
361–380 | 2437 | 2441 | 2447 | 2459 | 2467 | 2473 | 2477 | 2503 | 2521 | 2531 | 2539 | 2543 | 2549 | 2551 | 2557 | 2579 | 2591 | 2593 | 2609 | 2617 |
381–400 | 2621 | 2633 | 2647 | 2657 | 2659 | 2663 | 2671 | 2677 | 2683 | 2687 | 2689 | 2693 | 2699 | 2707 | 2711 | 2713 | 2719 | 2729 | 2731 | 2741 |
401–420 | 2749 | 2753 | 2767 | 2777 | 2789 | 2791 | 2797 | 2801 | 2803 | 2819 | 2833 | 2837 | 2843 | 2851 | 2857 | 2861 | 2879 | 2887 | 2897 | 2903 |
421–440 | 2909 | 2917 | 2927 | 2939 | 2953 | 2957 | 2963 | 2969 | 2971 | 2999 | 3001 | 3011 | 3019 | 3023 | 3037 | 3041 | 3049 | 3061 | 3067 | 3079 |
441–460 | 3083 | 3089 | 3109 | 3119 | 3121 | 3137 | 3163 | 3167 | 3169 | 3181 | 3187 | 3191 | 3203 | 3209 | 3217 | 3221 | 3229 | 3251 | 3253 | 3257 |
461–480 | 3259 | 3271 | 3299 | 3301 | 3307 | 3313 | 3319 | 3323 | 3329 | 3331 | 3343 | 3347 | 3359 | 3361 | 3371 | 3373 | 3389 | 3391 | 3407 | 3413 |
481–500 | 3433 | 3449 | 3457 | 3461 | 3463 | 3467 | 3469 | 3491 | 3499 | 3511 | 3517 | 3527 | 3529 | 3533 | 3539 | 3541 | 3547 | 3557 | 3559 | 3571 |
501–520 | 3581 | 3583 | 3593 | 3607 | 3613 | 3617 | 3623 | 3631 | 3637 | 3643 | 3659 | 3671 | 3673 | 3677 | 3691 | 3697 | 3701 | 3709 | 3719 | 3727 |
521–540 | 3733 | 3739 | 3761 | 3767 | 3769 | 3779 | 3793 | 3797 | 3803 | 3821 | 3823 | 3833 | 3847 | 3851 | 3853 | 3863 | 3877 | 3881 | 3889 | 3907 |
541–560 | 3911 | 3917 | 3919 | 3923 | 3929 | 3931 | 3943 | 3947 | 3967 | 3989 | 4001 | 4003 | 4007 | 4013 | 4019 | 4021 | 4027 | 4049 | 4051 | 4057 |
561–580 | 4073 | 4079 | 4091 | 4093 | 4099 | 4111 | 4127 | 4129 | 4133 | 4139 | 4153 | 4157 | 4159 | 4177 | 4201 | 4211 | 4217 | 4219 | 4229 | 4231 |
581–600 | 4241 | 4243 | 4253 | 4259 | 4261 | 4271 | 4273 | 4283 | 4289 | 4297 | 4327 | 4337 | 4339 | 4349 | 4357 | 4363 | 4373 | 4391 | 4397 | 4409 |
601–620 | 4421 | 4423 | 4441 | 4447 | 4451 | 4457 | 4463 | 4481 | 4483 | 4493 | 4507 | 4513 | 4517 | 4519 | 4523 | 4547 | 4549 | 4561 | 4567 | 4583 |
621–640 | 4591 | 4597 | 4603 | 4621 | 4637 | 4639 | 4643 | 4649 | 4651 | 4657 | 4663 | 4673 | 4679 | 4691 | 4703 | 4721 | 4723 | 4729 | 4733 | 4751 |
641–660 | 4759 | 4783 | 4787 | 4789 | 4793 | 4799 | 4801 | 4813 | 4817 | 4831 | 4861 | 4871 | 4877 | 4889 | 4903 | 4909 | 4919 | 4931 | 4933 | 4937 |
661–680 | 4943 | 4951 | 4957 | 4967 | 4969 | 4973 | 4987 | 4993 | 4999 | 5003 | 5009 | 5011 | 5021 | 5023 | 5039 | 5051 | 5059 | 5077 | 5081 | 5087 |
681–700 | 5099 | 5101 | 5107 | 5113 | 5119 | 5147 | 5153 | 5167 | 5171 | 5179 | 5189 | 5197 | 5209 | 5227 | 5231 | 5233 | 5237 | 5261 | 5273 | 5279 |
701–720 | 5281 | 5297 | 5303 | 5309 | 5323 | 5333 | 5347 | 5351 | 5381 | 5387 | 5393 | 5399 | 5407 | 5413 | 5417 | 5419 | 5431 | 5437 | 5441 | 5443 |
721–740 | 5449 | 5471 | 5477 | 5479 | 5483 | 5501 | 5503 | 5507 | 5519 | 5521 | 5527 | 5531 | 5557 | 5563 | 5569 | 5573 | 5581 | 5591 | 5623 | 5639 |
741–760 | 5641 | 5647 | 5651 | 5653 | 5657 | 5659 | 5669 | 5683 | 5689 | 5693 | 5701 | 5711 | 5717 | 5737 | 5741 | 5743 | 5749 | 5779 | 5783 | 5791 |
761–780 | 5801 | 5807 | 5813 | 5821 | 5827 | 5839 | 5843 | 5849 | 5851 | 5857 | 5861 | 5867 | 5869 | 5879 | 5881 | 5897 | 5903 | 5923 | 5927 | 5939 |
781–800 | 5953 | 5981 | 5987 | 6007 | 6011 | 6029 | 6037 | 6043 | 6047 | 6053 | 6067 | 6073 | 6079 | 6089 | 6091 | 6101 | 6113 | 6121 | 6131 | 6133 |
801–820 | 6143 | 6151 | 6163 | 6173 | 6197 | 6199 | 6203 | 6211 | 6217 | 6221 | 6229 | 6247 | 6257 | 6263 | 6269 | 6271 | 6277 | 6287 | 6299 | 6301 |
821–840 | 6311 | 6317 | 6323 | 6329 | 6337 | 6343 | 6353 | 6359 | 6361 | 6367 | 6373 | 6379 | 6389 | 6397 | 6421 | 6427 | 6449 | 6451 | 6469 | 6473 |
841–860 | 6481 | 6491 | 6521 | 6529 | 6547 | 6551 | 6553 | 6563 | 6569 | 6571 | 6577 | 6581 | 6599 | 6607 | 6619 | 6637 | 6653 | 6659 | 6661 | 6673 |
861–880 | 6679 | 6689 | 6691 | 6701 | 6703 | 6709 | 6719 | 6733 | 6737 | 6761 | 6763 | 6779 | 6781 | 6791 | 6793 | 6803 | 6823 | 6827 | 6829 | 6833 |
881–900 | 6841 | 6857 | 6863 | 6869 | 6871 | 6883 | 6899 | 6907 | 6911 | 6917 | 6947 | 6949 | 6959 | 6961 | 6967 | 6971 | 6977 | 6983 | 6991 | 6997 |
901–920 | 7001 | 7013 | 7019 | 7027 | 7039 | 7043 | 7057 | 7069 | 7079 | 7103 | 7109 | 7121 | 7127 | 7129 | 7151 | 7159 | 7177 | 7187 | 7193 | 7207 |
921–940 | 7211 | 7213 | 7219 | 7229 | 7237 | 7243 | 7247 | 7253 | 7283 | 7297 | 7307 | 7309 | 7321 | 7331 | 7333 | 7349 | 7351 | 7369 | 7393 | 7411 |
941–960 | 7417 | 7433 | 7451 | 7457 | 7459 | 7477 | 7481 | 7487 | 7489 | 7499 | 7507 | 7517 | 7523 | 7529 | 7537 | 7541 | 7547 | 7549 | 7559 | 7561 |
961–980 | 7573 | 7577 | 7583 | 7589 | 7591 | 7603 | 7607 | 7621 | 7639 | 7643 | 7649 | 7669 | 7673 | 7681 | 7687 | 7691 | 7699 | 7703 | 7717 | 7723 |
981–1000 | 7727 | 7741 | 7753 | 7757 | 7759 | 7789 | 7793 | 7817 | 7823 | 7829 | 7841 | 7853 | 7867 | 7873 | 7877 | 7879 | 7883 | 7901 | 7907 | 7919 |
Số nguyên tố là gì?
Số nguyên tố là một số chỉ chia hết cho 1 và chính nó.
Một số danh sách các số nguyên tố đặc biệt
Các số nguyên tố Bell
2, 5, 877, 27 644 437, 35 742 549 198 872 617 291 353 508 656 626 642 567, 359 334 085 968 622 831 041 960 188 598 043 661 065 388 726 959 079 837
Các số nguyên tố có dạng 10k + 1, k € Z (Centered decagonal primes)
11, 31, 61, 101, 151, 211, 281, 661, 911, 1 051, 1 201, 1 361
Các số nguyên tố có dạng 14k + 1, k € Z (Centered heptagonal primes)
43, 71, 197, 463, 547, 953, 1 471, 1 933, 2 647
Các số nguyên tố có dạng 4k + 1, k € Z (Centered square primes)
5, 13, 41, 61, 113, 181, 313, 421, 613, 761
Các số nguyên tố có dạng 6k + 1, k € Z (Centered triangular primes)
19, 31, 109, 199, 223, 409, 571, 631, 829, 1 489, 1 999, 2 972
Các số nguyên tố Chen
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 167, 173, 179, 181, 191, 193, 199 , 203, 207, 211, 227, 233, 239, 251, 257, 263, 269, 281, 293, 307, 311, 317, 337, 347, 353, 359, 379, 389, 401, 409, 419, 431, 443, 449, 461, 467, 479, 487, 491, 499, 503
Các số nguyên tố họ hàng
(3, 7), (7, 11), (13, 17), (19, 23), (37, 41), (43, 47), (67, 71), (79, 83), (97, 101), (103, 107), (109, 113), (127, 131), (163, 167), (193, 197), (223, 227), (229, 233), (277, 281), (307, 311), (313, 317), (349, 353), (379, 383), (397, 401), (439, 441), (457, 461), (487, 491), (499, 503), (613, 617), (643, 647), (673, 677), (739, 743), (757, 761), (769, 773), (823, 827), (853, 857), (859, 863), (877, 881), (883, 887), (907, 911), (937, 941), (967, 971), (1009, 1013), (1087, 1091)
Các số nguyên tố khối
Các số nguyên tố khối có dạng (x3 − y3) / (x − y), x = y + 1:
- 7, 19, 37, 61, 127, 271, 331, 397, 547, 631, 919, 1 657, 1 801, 1 951, 2 269, 2 437, 2 791, 3 169, 3 571, 4 219, 4 447, 5 167, 5 419, 6 211, 7 057, 7 351, 8 269, 9 241, 10 267, 11 719, 12 097, 13 267, 13 669, 16 651, 19 441, 19 927, 22 447, 23 497, 24 571, 25 117,
- 26 227
Các số nguyên tố khối dạng (x3 − y3) / (x − y), x = y + 2:
- 13, 109, 193, 433, 769, 1 201, 1 453, 2 029, 3 469, 3 889, 4 801, 10 093, 12 289, 13 873, 18 253, 20 173, 21 169, 22 189, 28 813, 37 633, 43 201, 47 629, 60 493, 63 949, 65 713, 69 313
Các số nguyên tố Cullen
3, 393 050 634 124 102 232 869 567 034 555 427 371 542 904 833
Các số nguyên tố Dirichlet
7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97, 103, 109, 127, 139, 151, 157, 163, 181, 193, 199, 211, 223, 229, 241, 271, 277, 283, 307, 313, 331, 337, 349, 367, 373, 379, 397, 409, 421, 433, 439, 457, 463, 487, 499.
Các số nguyên tố Mersenne kép
Tới tháng 8/2005, mới chỉ biết các số nguyên tố Mersenne kép.
7, 127, 2 147 483 647, 170 141 183 460 469 231 731 687 303 715 884 105 727
Các số nguyên tố Eisenstein không có phần ảo
2, 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197, 227, 233, 239, 251, 257, 263, 269, 281, 293, 311, 317, 347, 353, 359, 383, 389, 401, 419, 431, 443, 449, 461, 467, 479, 491
Các số nguyên tố Euclid
3, 7, 31, 211, 2 311
Các số nguyên tố giai thừa
2, 3, 5, 7, 23, 719, 5 039, 39 916 801, 479 001 599, 87 178 291 199, 10 888 869 450 418 352 160 768 000 001, 265 252 859 812 191 058 636 308 479 999 999, 263 130 836 933 693 530 167 218 012 159 999 999, 8 683 317 618 811 886 495 518 194 401 279 999 999
Các số nguyên tố Fermat
Đến tháng 9-2005, mới chỉ biết các số nguyên tố Fermat.
3, 5, 17, 257, 65 537
Các số nguyên tố Fibonacci
2, 3, 5, 13, 89, 233, 1 597, 28 657, 514 229, 433 494 437, 2 971 215 073
Các số nguyên tố Gauss
3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 79, 83, 103, 107, 127, 131, 139, 151, 163, 167, 179, 191, 199, 211, 223, 227, 239, 251, 263, 271, 283, 307, 311, 331, 347, 359, 367, 379, 383, 419, 431, 439, 443, 463, 467, 479, 487, 491, 499
Số nguyên tố Genocchi
17
Các số nguyên tố may mắn
7, 13, 19, 23, 31, 79, 97, 103, 109, 139, 167, 193, 239, 263, 293, 313, 331, 367, 379, 383, 397, 409, 487, 563
Các số nguyên tố Higgs
2, 3, 5, 7, 11, 13, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 101, 107, 109, 127, 131, 139, 149, 151, 157, 167, 173, 179, 181, 191, 197, 199, 211, 223, 229, 233, 251, 263, 269, 271, 277, 281, 283, 293, 311, 313, 317, 331, 347, 349, 359,
Các Highly Cototient
23, 47, 59, 83, 89, 113, 167, 269, 389, 419, 509, 659, 839
Các Số nguyên tố phi chính quy
37, 59, 67, 101, 103, 131, 149, 157, 233, 257, 263, 271, 283, 293, 307, 311, 347, 353, 379, 389, 401, 409, 421, 433, 461, 463, 467, 491
Các số nguyên tố Kynea
7, 23, 79, 1087, 66047, 263167, 16785407, 1073807359
Long primes
7, 17, 19, 23, 29, 47, 59, 61, 97, 109, 113, 131, 149, 167, 179, 181, 193, 223, 229, 233, 257, 263, 269, 313, 337, 367, 379, 383, 389, 419, 433, 461, 487, 491, 499
Các số nguyên tố của Lucas
2, 3, 7, 11, 29, 47, 199, 521, 2207, 3571, 9349
Các số nguyên tố Lucky
3, 7, 13, 31, 37, 43, 67, 73, 79, 127, 151, 163, 193, 211, 223, 241, 283, 307, 331, 349, 367, 409, 421, 433, 463, 487, 541, 577, 601, 613, 619, 631, 643, 673, 727, 739, 769, 787, 823, 883, 937, 991, 997, 1009, 1021, 1039, 1087, 1093, 1117, 1123, 1201, 1231, 1249, 1291, 1303, 1459, 1471, 1543, 1567, 1579, 1597, 1663, 1693, 1723, 1777, 1801, 1831, 1879, 1933, 1987, 2053, 2083, 2113, 2221, 2239, 2251, 2281, 2311, 2467, 2473, 2557, 2593, 2647, 2671, 2689, 2797, 2851, 2887, 2953, 2971, 3037, 3049, 3109, 3121, 3163, 3187, 3229, 3259, 3301, 3307, 3313
Các số nguyên tố Markov
2, 5, 13, 29, 89, 233, 433, 1 597, 2 897
Các số nguyên tố McNugget
13, 17, 19, 23, 29, 31, 37, 41, 43, 47
Các số nguyên tố Mersenne
Tính đến tháng 12 năm 2021[cập nhật] có 51 số nguyên tố Mersenne 2p − 1 tương ứng với số mũ p dưới đây:
- 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609, 57885161, 74207281, 77232917, 82589933. (dãy số A000043 trong bảng OEIS)
Các số nguyên tố Motzkin
2, 127, 15 511, 953 467 954 114 363
Các số nguyên tố Newman-Shanks-Williams
7, 41, 239, 9369319, 63018038201, 489133282872437279, 19175002942688032928599
Các Padovan
2, 3, 5, 7, 37, 151, 3329, 23833
Các số nguyên tố Palindrome
2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929, 10301, 10501, 10601, 11311, 11411, 12421, 12721, 12821, 13331, 13831, 13931, 14341, 14741, 15451, 15551, 16061, 16361, 16561, 16661, 17471, 17971, 18181, 18481, 19391, 19891, 19991, 30103, 30203, 30403, 30703, 30803, 31013, 31513, 32323, 32423, 33533, 34543, 34843, 35053, 35753, 36263, 36563, 37273, 37573, 38083, 38183, 38783, 39293, 70207, 70507, 70607, 71317, 71917, 72227, 72727, 73037, 73237, 73637, 74047, 74747, 75557, 76367, 76667, 77377, 77477, 77977, 78487, 78787, 78887, 79397, 79697, 79997, 90709, 91019, 93139, 93239, 93739, 94049, 94349, 94649, 94849, 94949, 95959, 96269, 96469, 96769, 97379, 97579, 97879, 98389, 98689
Các số nguyên tố Pell
2, 5, 29, 5741, 33461
Các số nguyên tố Perrin
2, 3, 5, 7, 17, 29, 277, 367, 853
Các số nguyên tố Pierpont
2, 3, 5, 7, 13, 17, 19, 37, 73, 97, 109, 163, 193, 257, 433, 487, 577, 769, 1153, 1297, 1459, 2593, 2917, 3457, 3889, 10369, 12289, 17497, 18433, 39367, 52489, 65537, 139969, 147457, 209953, 331777, 472393, 629857, 746497, 786433, 839809, 995329
Các bộ bốn số nguyên tố (quadruplet)
(5, 7, 11, 13), (11, 13, 17, 19), (101, 103, 107, 109), (191, 193, 197, 199), (821, 823, 827, 829), (1481, 1483, 1487, 1489), (1871, 1873, 1877, 1879), (2081, 2083, 2087, 2089), (3251, 3253, 3257, 3259), (3461, 3463, 3467, 3469),(5651, 5653, 5657, 5659), (9431, 9433, 9437, 9439), (13001, 13003, 13007, 13009), (15641, 15643, 15647, 15649), (15731, 15733, 15737, 15739), (16061, 16063, 16067, 16069), (18041, 18043, 18047, 18049), (18911, 18913, 18917, 18919), (19421, 19423, 19427, 19429), (21011, 21013, 21017, 21019), (22271, 22273, 22277, 22279), (25301, 25303, 25307, 25309), (31721, 31723, 31727, 31729), (34841, 34843, 34847, 34849), (43781, 43783, 43787, 43789), (51341, 51343, 51347, 51349), (55331, 55333, 55337, 55339), (62981, 62983, 62987, 62989), (67211, 67213, 67217, 67219), (69491, 69493, 69497, 69499), (72221, 72223, 72227, 72229), (77261, 77263, 77267, 77269), (79691, 79693, 79697, 79699), (81041, 81043, 81047, 81049), (82721, 82723, 82727, 82729), (88811, 88813, 88817, 88819), (97841, 97843, 97847, 97849), (99131, 99133, 99137, 99139)
Các bộ ba số nguyên tố (Prime triplet)
(5, 7, 11), (7, 11, 13), (11, 13, 17), (13, 17, 19), (17, 19, 23), (37, 41, 43), (41, 43, 47), (67, 71, 73), (97, 101, 103), (101, 103, 107), (103, 107, 109), (107, 109, 113), (191, 193, 197), (193, 197, 199), (223, 227, 229), (227, 229, 233), (277, 281, 283), (307, 311, 313), (311, 313, 317), (347, 349, 353), (457, 461, 463), (461, 463, 467), (613, 617, 619), (641, 643, 647), (821, 823, 827), (823, 827, 829), (853, 857, 859), (857, 859, 863), (877, 881, 883), (881, 883, 887)
Các số nguyên tố Primorial
5, 7, 29, 31, 211, 2309, 2311, 30029
Các số nguyên tố Pythagorean
5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137, 149, 157, 173, 181, 193, 197, 229, 233, 241, 257, 269, 277, 281, 293, 313, 317, 337, 349, 353, 373, 389, 397, 401, 409, 421, 433, 449, 457, 461
Các số nguyên tố chính quy (Regular prime)
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 43, 47, 53, 61, 71, 73, 79, 83, 89, 97, 107, 109, 113, 127, 137, 139, 151, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 239, 241, 251, 269, 277, 281, 313, 317, 331, 337, 349, 359, 367, 373, 383, 397, 401
Các số nguyên tố Riesel
11, 23, 239, 3167
Các số nguyên tố Safe
5, 7, 11, 23, 47, 59, 83, 107, 167, 179, 227, 263, 347, 359, 383, 467, 479, 503, 563, 587, 719, 839, 863, 887, 983, 1019, 1187, 1283, 1307, 1319, 1367, 1439, 1487, 1523, 1619, 1823, 1907
Các số nguyên tố Self trong hệ thập phân
3, 5, 7, 31, 53, 97, 211, 233, 277, 367, 389, 457, 479
Các cặp số nguyên tố
(5,11), (7,13), (11,17), (13,19), (17,23), (23,29), (31,37), (37,43), (41,47), (47,53), (53,59), (61,67), (67,73), (73,79), (83,89), (97.103), (101.107), (103.109), (107.113), (131.137), (151.157), (157.163), (167.173), (173.179), (191.197), (193.199), (223.229), (227.233), (233.239), (251.257), (263.269), (271.277), (277.283), (307.313), (311.317), (331.337), (347.353), (353.359), (367.373), (373.379), (383.389), (433.439), (443.449), (457.463), (461.467), (503.509)
Các số nguyên tố Smarandache-Wellin
2, 23, 2357
Số nguyên tố Smarandache-Wellin thứ tư có khoảng 355 chữ số.
Các số nguyên tố Sophie Germain
2, 3, 5, 11, 23, 29, 41, 53, 83, 89, 113, 131, 173, 179, 191, 233, 239, 251, 281, 293, 359, 419, 431, 443, 491, 509, 593, 641, 653, 659, 683, 719, 743, 761, 809, 911, 953, 1013, 1019, 1031, 1049, 1103, 1223, 1229, 1289, 1409, 1439, 1451, 1481, 1499, 1511,1559
Các số nguyên tố Star
13, 37, 73, 181, 337, 433, 541, 661, 937, 1093, 2053, 2281, 2521, 3037, 3313
Các số nguyên tố Stern
Đến tháng 10-2006, mới chỉ biết các số nguyên tố Stern sau, và có khả năng chỉ có chúng.
2, 3, 17, 137, 227, 977, 1187, 1493
Các số nguyên tố Supersingular
Có 15 số nguyên tố supersingular.
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71
Các số nguyên tố Thabit
2, 5, 11, 23, 47, 191, 383, 6143
Các số nguyên tố song sinh
(3, 5), (5, 7), (11, 13), (17, 19), (29, 31), (41, 43), (59, 61), (71, 73), (101, 103), (107, 109), (137, 139), (149, 151), (179, 181), (191, 193), (197, 199), (227, 229), (239, 241), (269, 271), (281, 283), (311, 313), (347, 349), (419, 421), (431, 433), (461, 463), (521, 523), (569, 571), (599, 601), (617, 619), (641, 643), (659, 661), (809, 811), (821, 823), (827, 829), (857, 859), (881, 883), (1019, 1021), (1031, 1033), (1049, 1051), (1061, 1063), (1091, 1093), (1151, 1153), (1229, 1231), (1277, 1279), (1289, 1291), (1301, 1303), (1319, 1321), (1427, 1429), (1451, 1453), (1481, 1483), (1487, 1489), (1607, 1609), (1619, 1621), (1667, 1669), (1697, 1699), (1721, 1723), (1787, 1789), (1871, 1873), (1877, 1879), (1931, 1933), (1949, 1951), (1997, 1999), (2027, 2029), (2081, 2083), (2087, 2089), (2111, 2113), (2129, 2131), (2141, 2143), (2237, 2239), (2267, 2269), (2309, 2311), (2339, 2341), (2381, 2383), (2549, 2551), (2591, 2593), (2687, 2689), (2711, 2713), (2789, 2791), (2801, 2803), (2999, 3001)
Các số nguyên tố Unique
3, 11, 37, 101, 9091, 9901, 333667
Các số nguyên tố Wagstaff
3, 5, 7, 11, 13, 17, 19, 23, 31, 43, 61, 79, 101, 127, 167, 191, 199, 313, 347, 701, 1709, 2617, 3539, 5807, 10501, 10691, 11279, 12391, 14479, 42737, 83339, 95369, 117239, 127031, 138937, 141079, 267017, 269987, 374321
Các số nguyên tố Wedderburn-Etherington
2, 3, 11, 23, 983, 2179, 24631, 3626149
Các số nguyên tố Wieferich
Đến tháng 9 năm 2005 mới chỉ biết các nguyên tố Wieferich sau:
1093, 3511
Các số nguyên tố Wilson
Đến tháng 9 năm 2005, mới chỉ biết các số nguyên tố Wilson sau:
5, 13, 563
Các số nguyên tố Wolstenholme
Đến tháng 9 năm 2005, mới chỉ biết các số nguyên tố Wolstenholme:
16843, 2124679
Các số nguyên tố Woodall
3, 7, 23, 383, 32212254719, 2833419889721787128217599
Tham khảo
Liên kết ngoài
Wikiwand - on
Seamless Wikipedia browsing. On steroids.