From Wikipedia, the free encyclopedia
Trong lý thuyết số, chia hết là một quan hệ hai ngôi trên tập các số nguyên. Quan hệ này cũng có thể mở rộng cho các phần tử trên một vành. Quan hệ chia hết gắn liền với nhiều khái niệm quan trọng trong lý thuyết số như số nguyên tố, hợp số, định lý cơ bản của số học... Để là một phép chia hết, phép chia đó phải được đáp ứng một yêu cầu: không có dư.
Bài viết này cần thêm chú thích nguồn gốc để kiểm chứng thông tin. |
Cho hai số nguyên a, b. Nếu tồn tại số nguyên q sao cho a=b.q thì ta nói rằng a chia hết cho b (ký hiệu ), hay b là ước của a (ký hiệu ). Khi đó người ta cũng gọi a là bội số (hay đơn giản là bội) của b, còn b là ước số (hay đơn giản là ước) của a.
Các số tự nhiên lớn hơn 1, không là số nguyên tố được gọi là hợp số.
Một ước số của n được gọi là không tầm thường nếu nó khác 1, -1, n, -n. Số nguyên tố thì không có ước số không tầm thường. 1, -1, n, -n là các ước tầm thường của n.
Cho a, b là hai số nguyên (b khác 0), khi đó tồn tại duy nhất hai số nguyên q, r sao cho a= bq+r với 0 ≤ r <|b|. Ta có a là số bị chia, b là số chia, q là thương số và r là số dư. Khi chia a cho b có thể có số dư là 0; 1; 2;...; |b|-1. (Ký hiệu |b| là giá trị tuyệt đối của b.)
Đặc biệt nếu r = 0 thì a = bq, khi đó a chia hết cho b.
a) Nếu và thì .
b) Nếu , và ƯCLN(b,c)=1 thì .
c) Nếu và ƯCLN(b,c)=1 thì .
d) Trong n số nguyên liên tiếp có một và chỉ một số chia hết cho n (n≥1).
Chứng minh: Lấy n số nguyên liên tiếp chia cho n thì được n số dư khác nhau từng đôi một. Trong đó có duy nhất một số dư bằng 0, tức là có duy nhất một số chia hết cho n.
e) Nếu và thì và .
Chứng minh: Vì nên a=m.n1, vì nên b=m.n2 (n1, n2 là các số nguyên). Vậy a+b=m.(n1+n2) mà (n1+n2) là số nguyên nên .
Định lý cơ bản của số học (hay định lý về sự phân tích duy nhất ra các thừa số nguyên tố) phát biểu như sau: Mọi số tự nhiên lớn hơn 1 có thể viết một cách duy nhất (không kể sự sai khác về thứ tự các thừa số) thành tích các thừa số nguyên tố, chẳng hạn
Một cách tổng quát: Mọi số tự nhiên n lớn hơn 1, có thể viết duy nhất dưới dạng:
trong đó là các số nguyên tố. Vế phải của đẳng thức này được gọi là dạng phân tích tiêu chuẩn của n'.
Cho số tự nhiên n> 1 với dạng phân tích tiêu chuẩn như trên. Khi đó mỗi ước b của n có dạng:
trong đó với mỗi .
Do đó số tất cả các ước tự nhiên của n là
Tổng các ước tự nhiên của số tự nhiên n được ký hiệu là σ(n).
Công thức tính σ(n) như sau
Xem thêm: Hàm tống các ước
Các ước tự nhiên khác chính nó của n được gọi là ước chân chính (hay ước thực sự) của n. Tổng các ước chân chính (hay thực sự) của n được ký hiệu là . Nếu tổng các ước chân chính của số tự nhiên n bằng chính n hay thì n được gọi là số hoàn hảo.
Ví dụ:
Quan hệ chia hết trong tập hợp số tự nhiên là một quan hệ thứ tự bộ phận.
Trong , với hai phần tử a, b bất kỳ, khác không, tồn tại phần tử d trong là cận dưới đúng của a và b theo quan hệ chia hết, nghĩa là
Phần tử này chính là ƯCLN(a, b). Tương tự, với hai số tự nhiên a, b bất kỳ, cùng khác không, tồn tại phần tử m trong là cận trên đúng của a và b theo quan hệ chia hết, nghĩa là
Phần tử này chính là BCNN(a, b).
Nói cách khác, cùng với quan hệ chia hết tạo thành một dàn.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.