Loading AI tools
З Вікіпедії, вільної енциклопедії
Точки Лагранжа (менш відомі як точки лібрації (від лат. libro — коливання або стаціонарні точки)) — 5 точок в орбітальній конфігурації, де тіло з незначною масою, що зазнає тільки гравітаційного впливу двох взаємопов'язаних масивних тіл, буде перебувати у незмінній позиції щодо них. Локальний розв'язок задачі трьох тіл.
Точки Лагранжа | |
Названо на честь | Жозеф-Луї Лагранж |
---|---|
Частково збігається з | Лібрація |
Точки Лагранжа у Вікісховищі |
Точки названо на честь математика та астронома Жозеф-Луї Лагранжа, який відкрив їх 1772 року, працюючи над проблемою невизначеності орбіт у системі з трьох тіл. Його дослідження довели, що існує локальний розв'язок цієї проблеми у випадку, коли орбіти всіх тіл є коловими. У цьому разі можна вважати, що два масивних тіла обертаються навколо їхнього спільного центра мас (із постійною швидкістю). Навколо них існує п'ять точок, у яких третє тіло (масою якого можна знехтувати) залишатиметься непорушним у системі відліку, яка пов'язана з масивними тілами та обертається разом із ними. Ці точки заведено позначати латинськими літерами L з індексами від 1-го до 5-ти.
Всі точки лежать у площині обертання масивних тіл. Точки, що перебувають на одній лінії з двома масивними тілами, називають колінеарними. Точки, що розташовані у вершинах рівносторонніх трикутників, основу яких утворює вісь двох основних тіл, називаються трикутними.
L1 — розташована між двома об'єктами, ближче до тіла меншої маси.
L2 — розташована на лінії двох об'єктів за тілом меншої маси.
L3 — на лінії двох об'єктів за тілом більшої маси.
Відстань від центра мас системи до цих точок наближено обчислюється за формулами[1]:
де
У випадках, коли маса тіла M2 настільки менша за масу M1, що масою M2 можна практично знехтувати (наприклад у системі Сонце—Земля, маса нашої планети менша сонячної в 332 981 раз), точки L1 та L2 розташовані на однаковій відстані у протилежних напрямках від M2.
L3 розміщується на такій же орбіті, що і M2 з різницею в 180°.
У системі Сонце—Земля точка L1 розташована на відстані 1,5 млн км від центру Землі, у системі Земля—Місяць — на відстані 64 500 км від супутника.
Середня відстань від Землі до Сонця млн. км.
Середня відстань між центрами Землі і Місяця — км.
L4 та L5 розташовані симетрично щодо лінії M1—M2 та утворюють вершини двох рівносторонніх трикутників з основою в точках M1 та M2[2]. У цьому випадку орбіта тіла незначної маси збігається з орбітою менш масивного тіла M2. L4 випереджає його у русі на 60°, а L5 відстає від M2 на 60°.
Розташовані в колінеарних точках Лагранжа тіла перебувають у нестабільній рівновазі. Будь-який зсув уздовж прямої, що сполучає масивні тіла, призводить до втрати рівноваги. Тіло буде віддалятися від цього положення все далі й далі.
Попри це існують квазі-стабільні замкнені орбіти навколо точок лібрації (у системі відліку, що обертається разом із масивними тілами), принаймні, у випадку задачі трьох тіл. Це так звані гало-орбіти, перпендикулярні площині, у якій лежать орбіти масивних тіл. Якщо на рух впливають інші тіла (як це відбувається у Сонячній системі) замість замкнутої орбіти рух відбуватиметься квазіперіодичною орбітою, що має назву орбіти Ліссажу. Попри нестабільність таких орбіт космічний апарат може залишатися поблизу відповідних точок Лагранжа з невеликими витратами пального[3].
У троянських точках (на відміну від колінеарних) забезпечується стабільна рівновага, якщо співвідношення M1/M2 > 25[4]. Таке співвідношення властиве системам Сонце—Юпітер, Сонце—Земля, Земля—Місяць та ін. У разі відхилення об'єкт рухатиметься стабільною орбітою навколо точки лібрації[1]. Щоправда, у випадку системи Земля—Місяць ситуація значно ускладнюється впливом сонячної гравітації.
У загальнішому випадку еліптичних орбіт стаціонарних точок не існує: вони перетворюються на «області» Лагранжа. Лагранжеві точки, побудовані для кожного моменту часу (як для колових орбіт), утворюють стаціонарні еліптичні орбіти, подібні до орбіт масивних тіл. Тіло на орбіті Лагранжевої точки має такий же період обертання, що і два масивні тіла (як і у випадку колових орбіт). Цей факт не залежить від того, чи колова орбіта, а це означає, що еліптичні орбіти, окреслені точками Лагранжа, є розв'язком задачі трьох тіл.
Троянські астероїди виявлено також зокрема у Марса та Нептуна. Також супутник Сатурна — Тефія має двох власних троянців: Телесто та Каліпсо.
2010 року було сфотографовано, а 2011 — обчислено орбіту 2010 TK7. Наразі це єдиний відомий троянський астероїд Землі. [6]
Точка L1 системи Земля—Сонце перебуває на відстані 1,5 мільйона км у напрямку Сонця, тому є зручною для його дослідження. Космічні апарати у цій точці здебільшого призначені для аналізу сонячної активності:
Точка L2 системи Земля—Сонце зручна для спостережень Всесвіту, оскільки Сонце, Земля та Місяць перебувають разом на одній невеликій ділянці неба і майже весь небосхил залишається вільним для спостережень, а сонячне опромінення є помірно стабільним (на відміну від навколоземної орбіти)[10]:
Точка L3 специфічна тим, що її ніколи не видно з Землі. Але жодних проектів її застосування наразі не відомо.
Точки L4 та L5 є легкодоступними з погляду космонавтики. Для запуску в ці точки космічного апарата потрібно навіть менше палива, аніж для доставки на Місяць[11].
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.