Loading AI tools
дужка Гауса, математична функція округлення чисел у більшу та меншу сторону відповідно З Вікіпедії, вільної енциклопедії
Ціла частина дійсного числа — найбільше ціле число, яке не більше ніж . Ціла частина числа зазвичай позначається як .
В інформатиці поряд з функцією ціла частина використовують функції підлога (англ. floor) та стеля (англ. ceiling). Функція підлога позначається як та збігається з цілою частиною, функція стелі позначається як та дорівнює найменшому цілому числу, яке не менше за .
Визначення за допомогою нерівностей такі:
Оскільки в напіввідкритому інтервалі довжини 1 є рівно одне ціле число, то для будь-якого дійсного x існують єдині цілі числа m і n, що задовольняють нерівність
Тоді і також можна приймати як означення функцій підлоги та стелі.
Наступні формули можна використовувати для спрощення виразів, що включають функцій підлоги та стелі.[1]
На мові відношень порядку функція підлоги є залишковим відображенням, тобто частиною відповідності Галуа: це верхнє спряження функції, яке вкладує цілі числа в дійсні числа.
Наступні формули показують, як додавання цілих чисел до аргументу впливає на функції:
Вищезазначені формули невірні, якщо n не є цілим числом; однак для будь-яких x, y мають місце наступні нерівності:
З означень випливає, що
Насправді для цілих чисел n і значення функцій підлоги і стелі збігаються :
Зміна знаку аргументу, міняє місцями функції підлоги та стелі і змінює знак:
і:
Зміна знаку аргументу доповнює дробову частину:
Функції підлоги, стелі та дробової частини є ідемпотентними:
Результатом композиції функцій підлоги та стелі є внутрішня функція:
завдяки властивості тотожності для цілих чисел.
Якщо m і n цілі числа, а n ≠ 0, то
Якщо n - натуральне число,[2] то
Якщо m додатне,[3] то
Для m = 2 отримуємо
У загальному випадку,[4] для додатнього m (див.тотожність Ерміта)
Для перетворення між функціями підлоги та стелі можна використати наступні формули (m додатне)[5]
Для всіх натуральних чисел m і n:[6]
яка при додатних [[Взаємно прості числа|взаємнопростих} m і n зводиться до
Оскільки права частина у загального випадку симетрична відносно m і n, то
І нарешті, для додатних m і n,
це співвідношення іноді називають законом взаємності.[7]
Для додатного цілого n і довільних дійсних чисел m, x:[8]
Жодна з функцій, обговорюваних у цій статті, не є неперервною, але всі - кусково-лінійні: функції , , і мають розриви в цілих числах. Функція є напівнеперервною зверху і функції і - напівнеперервні знизу.
Оскільки жодна з функцій, розглянутих у цій статті, не є неперервною, тому жодна з них не допускає розклад у вигляді степеневих рядів. Оскільки функції підлоги і стелі неперіодичні, то вони не допускають рівномірно збіжних розкладів у вигляді рядів Фур'є. Функція дробової частини має розклад у ряд Фур'є[9]
для x не цілого числа.
У точках розриву ряд Фур'є збігається до значення, яке є середнім його границь зліва та справа, на відміну від функцій підлоги, стелі та дробової частини: для фіксованого y і x кратного y ряд Фур'є дає збіжність до y/2, а не до . У точках неперервності ряд збігається до відповідного значення функції.
З формули отримуємо
для x не цілого числа.
Для цілої частини числа довгий час використовувалось позначення , введене Гаусом.
В 1962 році Кеннет Айверсон запропонував заокруглення числа до найближчого цілого в меншу і більшу сторони називати «підлога» і «стеля» і позначати і відповідно[10]. У цих позначеннях .
В сучасній математиці вживають обидва позначення, і , однак існує тенденція переходу до термінології і позначень Айверсона. Одна з причин цього — потенційна неоднозначність поняття «ціла частина числа»[10]. Наприклад, ціла частина числа 2,7 рівна 2, але можливі дві думки на те, як визначити цілу частину числа −2,7. Відповідно до даного в цій статті визначення , однак в деяких калькуляторах наявна функція цілої частини числа INT, для від'ємних чисел визначена як INT(-x) = -INT(x), таким чином INT(-2,7) = −2. В термінології Айверсона відсутні можливі неоднозначності:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.