Loading AI tools
абсолютно неперервний розподіл, що моделює час між двома послідовними завершеннями однієї і тієї ж події З Вікіпедії, вільної енциклопедії
В статистиці степеневий розподіл (англ. power law) — це така функціональна залежність між двома величинами, при котрій відносна зміна однієї величини призводить до пропорційної відносної зміни іншої величини, незалежно від початкових значень цих величин: залежність однієї величини від іншої являє собою степеневу функцію. Наприклад, площа квадрата має степеневу залежність від довжини його сторони: якщо довжина буде збільшена удвічі, то площа збільшиться вчетверо.[1]
В багатьох фізичних, біологічних та штучних явищах спостерігаються розподіли, відповідні степеневому закону в різних масштабах: наприклад, розміри місячних кратерів і сонячних спалахів,[2] закономірності харчування різних видів,[3] активність популяцій нейронів,[4] частота вживання слів в більшості мов, розповсюдженість прізвищ, кількість видів[en] в кладах організмів,[5] масштаби аварій в енергосистемах, число карних звинувачень на одного злочинця, кількість вивержень вулканів,[6] людські оцінки інтенсивності стимулів[7][8] і багато інших величин.[9] Емпіричні розподіли можуть відповідати степеневому закону на всьому діапазоні своїх значень, або, наприклад, в хвості. Затухання звукових коливань[en] проходить за степеневим законом у широких смугах частот у багатьох складних середовищах. Аллометричні закономірності для відношень між біологічними змінними є одними з самих відомих прикладів степеневих законів в природі.
Для степеневого закону характерна масштабна інваріантність. Якщо виконується , то масштабування аргументу на постійний коефіцієнт призведе до пропорційного масштабування самої функції. Тобто:
де означає пряму пропорційність. Іншими словами, Множення аргументу на сталу величину призводить просто до множення значень функції на сталу величину . Таким чином, всі степеневі закони з заданим показником ступеню еквівалентні з точністю до множення на константу, оскільки всі вони являють собою лише масштабування версії один одного. Це породжує лінійну залежність між логарифмами величин та , і пряму лінію на графіку у подвійному логарифмічному масштабі (log–log), яку часто вважають характерною ознакою степеневого закону. В реальних даних ця ознака є необхідною, але не достатньою, щоб зробити висновок щодо наявності степеневого закону. Існує багато способів згенерувати скінченні об'єми даних, що імітують відповідність степеневому закону, але відхиляються від нього в асимптотичній межі (наприклад, якщо процес генерації даних підпорядковується логнормальному розподілу). Перевірка моделей на відповідність степеневому закону є актуальною областю досліджень в статистиці, див. нижче.
Степеневий закон має строго визначене середнє значення при , тільки якщо , і має скінченну дисперсію, тільки якщо . Для більшості відомих степеневих законів в природі значення показника ступеню такі, що середнє значення є строго визначеним, а дисперсія ні, тому для них існує можливість виникнення подій типу «чорний лебідь».[10] Це можна показати на прикладі наступного уявного експерименту:[11] уявіть себе в кімнаті з друзями і оцініть середньомісячний прибуток у цій кімнаті. Тепер уявіть, що в цю кімнату увійшла сама заможна людина у світі з місячним прибутком близько 1 мільярда US$. Як зміниться значення середньомісячного доходу в кімнаті? Розподіл доходів підпорядковується степеневому закону, відомому як розподіл Парето (наприклад, капітали американців, розподіленні за степеневим законом з показником ступеню 2).
З одного боку, це не дозволяє коректно застосовувати традиційну статистику, засновану на дисперсії і середньоквадратичному відхиленні (наприклад, регресійний аналіз). З іншого, це дозволяє здійснювати ефективне за витратами втручання.[11] Наприклад, нехай шкідливі викиди автомобілів розподіленні по степеневому закону серед автомобілів (тобто більшість забруднень здійснюється дуже невеликим числом автомобілів). Тоді буде достатньо прибрати з доріг цю невелику кількість автомобілів, щоб суттєво знизити цю кількість викидів.[12]
Медіана існує: для степеневого закону x –k с показником ступеню вона приймає значення 21/(k — 1)xmin, де xmin — це мінімальне значення, для якого виконується степеневий закон.[13]
Еквівалентність степеневого розподілу з особливою масштабною експонентою може скоріше мати пояснення в теорії динамічних процесів, ніж виводитися з відношень степеневого розподілу. У фізиці, наприклад, фазовий перехід в термодинамічних системах асоціюється з появою степеневого розподілу деяких величин, експоненти відносяться до критичних індексів системи. Різні системи з однаковими критичними індексами — це ті, що демонструють ідентичну поведінку при наближенні до критичного значення — може буди продемонстрована за допомогою теорії ренормалізаційних груп, поділяти однакову фундаментальну динаміку. Наприклад, поведінка води та CO2 в їх точках кипіння потрапляє в однакові класи універсальності, тому, що вони мають однакові критичні індекси.[джерело?][прояснити] По факту, майже вся суть фазових переходів описана невеличкою множиною класів універсальності. Подібні спостереження були зроблені, хоча й не так всеосяжно, для різних самоорганізованих критичних систем, де критичні точки систем — це атрактор. Формально, цей динамічний обмін відноситься до універсальності[en], і системи з точно такими ж критичними індексами називаються тими, що належать класу універсальності.
Науковий інтерес до відношень степеневого розподілу частково випливає з легкості, з якою деякі поширені класи механізмів їх породжують.[14] Наявність степеневого розподілу на деяких даних може вказати на специфіку поведінки механізмів, які можуть лежати в основі природного феномену в цьому питанні, та може визначати глибокі зв'язки з іншими, здавалося ніяк не пов'язаними, системами;[15] див. також універсальність вище. Поширеність степеневого розподілу в фізиці частково походить з обмежень на розмірності, у той час як в складних системах, степеневий розподіл несе відбиток ієрархій або специфічних випадкових процесів. У доволі рідких випадках степеневий розподіл є розподілом Парето, структурною подібністю фракталів або законів масштабування в біологічних системах. Пошук причин виникнення степеневого розподілу та зусилля по його виявленню та доведенню їх в реальному житті є актуальною темою у багатьох галузях науки, включаючи фізику, комп'ютерні науки, мовознавство, геофізику, нейронауку та інші.
Однак, найбільший інтерес до степеневого розподілу походить з розподілу ймовірностей: розподіл великої кількості різноманітних величин здається виводиться з формул степеневого розподілу, принаймні в верхній частині(значні події). Поведінка цих значних подій прив'язує ці величини до вивчення теорії екстремальних значень[en], яка розглядає частоти вкрай рідкісних подій як біржовий крах та великі стихійні лиха. Це головним чином вивчення статистичних процесів, названих «степеневим розподілом».
В емпіричному контексті, апроксимація в степеневому розподілі зазвичай включає відхилення моменту , яка може представлятися невизначеністю в спостережених даних (можливість виміру або помилки вибірки) або прокладає простий шлях до спостереження відхилень з функцією степеневого розподілу (можливо для випадкових процесів):
Математично, строгий степеневий розподіл не може бути розподілом ймовірностей, але розподіл представлений усіченою степеневою функцією можливий: for де експонента більше ніж 1, мінімальне значення потребує іншого розподілу, що має нескінченну площу x наближаючись до 0, та константа C — це вимірювальний фактор для забезпечення того, що вся площа буде рівнятися 1, як необхідна умова розподілу ймовірностей. Частіше використовується асимптотичний степеневий розподіл — який вірний тільки в межі; дивіться розподіл ймовірностей степеневого розподілу для більших деталей. Типова експонента спадає в межах , хоча не завжди.[9]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.