Remove ads
З Вікіпедії, вільної енциклопедії
Скалярна кривина (або скаляр Річі) — найпростіший з можливих інваріантів кривизни Ріманових многовидів. Кожній точці многовиду вона ставить у відповідність одне дійсне число, яке визначається внутрішньою геометрією многовида в околиці цієї точки. Зокрема, скалярна кривина виражає значення об'єму на який відрізняються геодезичні кулі у викривленому рімановому многовиді і в евклідовому просторі. Отримується згорткою тензора Річчі з метричним тензором
В загальної теорії відносності функціонал дії для гравітаційного поля виражається за допомогою інтеграла по чотиривимірному об'єму від скалярної кривизни:
Тому рівняння гравітаційного поля можуть бути отримані шляхом взяття похідної Ейлера-Лагранжа від скалярної густини кривизни [1].
Для двовимірних ріманових многовидів скалярна кривина збігається з гаусовою кривиною многовиду. Інтеграл по гаусовій кривині дорівнює ейлеровій характеристиці поверхні помноженій на — це твердження становить суть теореми Гауса-Бонне.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.