Loading AI tools
З Вікіпедії, вільної енциклопедії
Лінійним відображенням (лінійним оператором, лінійним перетворенням) — називається відображення векторного простору над полем в векторний простір (над тим же полем )
що має властивість лінійності:
Лінійне відображення зберігає операції додавання векторів і множення вектора на скаляр:
Лінійне відображення векторних просторів є їх гомоморфізмом. А у випадку бієктивності відображення то і ізоморфізмом.
Лінійне відображення — найважливіше поняття лінійної алгебри, завдяки якому вона отримала свою назву.
У функціональному аналізі розглядаються неперервні лінійні оператори між топологічними векторними просторами, але означення "неперервний" зазвичай випускається.
Лінійне відображення, лінійний оператор — узагальнення лінійної числової функції (точніше, функції у = кх) на випадок більш загальної множини аргументів і значень. Лінійні оператори, на відміну від нелінійних, достатньо добре досліджені, що дозволяє успішно застосовувати результати загальної теорії, оскільки їх властивості не залежать від природи величин.
множина всіх лінійних функціоналів складає спряжений простір до , який теж є лінійним простором (позначається звичайно )
В скінченномірному випадку ці властивості подібні властивостям матриць: множення, додавання і множення на скаляр.
Число називається ранг і записується як чи
Якщо розмірності і скінченні й вибрані базиси, то лінійне відображення задається своєю матрицею відносно до цих базисів.
І ранг відображення збігається з рангом матриці відображення.
Якщо в просторі вибрано базис , в просторі вибрано базис , то матрицею лінійного відображення в даних базисах називається матриця
j-ий стовпчик якої складається з координат вектора , тобто координат образу j-го базисного вектора
Координати образу вектора в базисі при лінійному відображенні
виражаються через координати вектора в базисі за формулою:
Якщо A і Ã відповідно матриці лінійного відображення в базисах і то
де S і T — матриці переходу від базису до базису і від базису до базису відповідно:
При лінійному перетворенні (тобто, коли відображення в той же простір):
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.