Remove ads
З Вікіпедії, вільної енциклопедії
Клас еквівалентності елемента множини за заданим на цій множині відношенням еквівалентності є підмножина множини , що складається з елементів еквівалентних :
Класи еквівалентності між елементами структур часто використовуються для отримання меншої структури, елементами якої є класи. Зв'язок кожного елемента класу поділяється принаймні з одним іншим елементом іншого класу. Клас можна вважати тотожністю одного з оригінальних елементів.
З властивостей відношення еквівалентності випливає, що
Іншими словами, якщо ~ є відношення еквівалентності на множині X, то ці твердження еквівалентні:
Відношення еквівалентності є бінарним відношенням, яке має три властивості:
Клас еквівалентності елемента a позначається [a] і може визначатися як множина.
Альтернативне позначення [a]R може бути використане для позначення класу еквівалентності елемента зокрема у відношенні R. Це називається R-класу еквівалентність. Множина всіх еквівалентних класів в X даного відношення еквівалентності позначається як X/~ і називається фактор-множина X на ~. Кожне відношення еквівалентності має канонічну проєкцію, сюр'єктивну функцію π з X де X/~ задано π(x) = [x].
Відображення
називається природним відображенням (або канонічної проєкцією) на фактор-множину . Нехай , — множини, - відображення, тоді бінарне відношення визначене правилом
є відношенням еквівалентності на . При цьому відображення індукує відображення , яке визначається правилом
або, що те ж саме,
При цьому виходить факторизація відображення на сюр'єктивне відображення і ін'єктивне відображення .
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.