Екологі́чне будівни́цтво або зелене будівництво (англ.green construction)— це практика будівництва та експлуатації будівель, метою якої є зниження рівня споживання енергетичних і матеріальних ресурсів протягом всього життєвого циклу будівлі: від вибору ділянки до проектування, будівництва, експлуатації, ремонту і знесення.
Іншою метою зеленого будівництва є збереження або підвищення якості будівель і комфорту їх внутрішнього середовища.
Хоча нові технології постійно удосконалюються для застосування у поточній практиці створення зелених будівель, основною турботою даного підходу є скорочення загального впливу споруди на довкілля і людське здоров'я, що досягається за рахунок:
ефективного використання енергії, води та інших ресурсів;
уваги до підтримки здоров'я мешканців;
скорочення кількості відходів, викидів та інших впливів на довкілля.
Енергоефективність відіграє важливу роль у стійкій архітектурі. Це включає енергозбереження для опалення, кондиціонування, освітлення та інших цілей; а також використання відновлюваних джерел енергії. На будівлі припадає 40% світового споживання енергії.[16] Завдяки інтеграції принципів енергоефективних проєктування, матеріалів і технологій, можливо збільшити прибутки, знизити експлуатаційні витрати, скоротити викиди парникових газів і сприяти цілям сталого розвитку. Енергоефективні технології та практики включають:
Стратегії пасивного дизайну: правильна орієнтація будівлі, оптимізоване розміщення вікон, природне освітлення, пасивна вентиляція[en] та ефективна ізоляція, задля зменшення потреби в нагріванні та охолодженні.
Високоефективні ізоляційні конструкції: аерогелі та вакуумні ізоляційні панелі, для мінімізації передачі тепла через стіни, дахи та підлоги, тим самим зменшуючи споживання енергії будівлею.[17]
Енергоефективні системи опалення, вентиляції та кондиціонування повітря (HVAC): такі як теплові насоси, системи водяного опалення, повітряне опалення, променеве опалення та охолодження[en], системи енергоменеджменту, та інші, щоб забезпечити тепловий комфорт з мінімальним споживанням енергії.[17][18] Системи штучного інтелекту використовуються для прогнозування, оптимізації, контролю та діагностики систем опалення, вентиляції та кондиціонування.[19][20][21]
Передові технології освітлення: світлодіоднілампи та стрічки, системи збору денного світла[en] та датчики присутності[en], щоб мінімізувати споживання електроенергії, забезпечуючи достатній рівень освітлення.[22][23]
Стійкі будівельні матеріали з низьким впливом на довкілля є одним з основних принципів стійкої архітектури та циркулярного будівництва.[24] Стійкість матеріалів оцінюється за соціальними, економічними та екологічними факторами[25] (див. також Стійка архітектура, Сталий дизайн, Стабільне місто). Стійкі будівельні матеріали включають:
Перероблені матеріали чинять менший негативний вплив на довкілля та пропонують економічну вигоду та, в деяких випадках, унікальні властивості перероблених матеріалів.[26][27] Прикладами є заповнювачі бетону з будівельних та інших відходів[26], армований переробленим сталевим волокном бетон[28], перероблений пластик та біопластик, повторно використана деревина тощо. (див. Циркулярне будівництво)
Біологічні матеріали: відновлювані і біологічно розкладні матеріали, частина з яких виробляються з відходів сільського господарства в циркулярній біоекономіці.[24]
Конопляний бетон (костробетон, конопляний цемент[29]) — це різновид рослинного бетону[30], що складається з суміші конопляних волокон (костриці), вапна та води, який використовують як стійку альтернативу бетону. Він має чудові термо- та звукоізоляційні властивості, є легким, вогнетривким (в залежності від пропорцій) та поглинає вуглекислий газ під час процесу твердіння (реагуючи з CO2 повітря в процесі карбонізації), на додачу до вуглецю, який накопичується в целюлозі волокон в процесі росту коноплі, що загалом робить його унікальним вуглецево-негативним стійким будівельним матеріалом.[31][32] Окрім бетону, з костриці виробляють плити та цеглу.[29]
Матеріали на основі міцелію: легкі матеріали, придатні для ізоляції, пакування та навіть структурних компонентів. Перспективні як тепло- та звукоізоляційна піна. Мають низьку щільність і теплопровідність, високе звукопоглинання і пожежобезпечність. Можуть замінити пінопласт, дерев’яну та пластикову ізоляцію, дверні серцевини, панелі, компоненти підлоги та меблів.[33] Поєднуються з іншими сільськогосподарськими та промисловими відходами для створення композитних матеріалів.[34]
Відходи виробництва цукрової тростини, зернових культур та інші сільськогосподарські відходи, та їх комбінації, використовуються на фермах для виготовлення цегли, панелей, будівельних розчинів тощо.[35]
Поліуретани на біологічній основі: поліуретани на біологічній основі виготовляють з рослинних олій, біомаси або CO2, і вони знаходять застосування у пінах, клеях і покриттях.[36][37] Застосування поліуретанових покриттів на біологічній основі призвело до меншого часу висихання та вищої твердості з однаковим блиском, хімічною стійкістю та механічною стійкістю.[38]
Зелені стіни та озеленення дахів: пропонують переваги для навколишнього середовища, такі як поглинання вуглецю, покращення якості повітря, зменшення шуму та управління зливовими водами, а також забезпечують економічні переваги завдяки енергоефективності – теплоізоляція в холодні пори року та охолодженню повітря влітку. Крім того, вони покращують соціальний добробут та психічне здоров'я, та сприяють біорізноманіттю в міському середовищі.[39][40] Міські сільськогосподарські ініціативи, такі як громадські сади та ферми на дахах, сприяють місцевому виробництву продуктів харчування та зміцнюють зв’язки в громадах. Вертикальні ферми[41] та міське сільське господарство[42] використовують гідропоніку[43][44] або аеропоніку[45], максимізуючи простір і мінімізуючи споживання води.[46]
Горковлюк І. І., Ковальський В. П. (2023). Будинки з екологічних будівельних матеріалів (вид. Збірник тез доповідей Міжнародної науково-практичної конференції
«Сучасні світові тенденції розвитку науки, освіти, технологій та суспільства»). Кропивницький: ЦФЕНД. с.64.{{cite book}}: Вказано більш, ніж один |pages= та |page= (довідка)
Technische Universitat Berlin, Karin A.; Technische Universitat Berlin, Sebastian; Hoffmann, Karin A.; Schroder, Sebastian; Nehls, Thomas; Pitha, Ulrike; Pucher, Bernhard; Zluwa, Irene; Gantar, Damjana (2023). Vertical Green 2.0 – The Good, the Bad and the Science(PDF)(англ.). Universitatsverlag der TU Berlin. doi:10.14279/depositonce-16619.