Топ питань
Часова шкала
Чат
Перспективи
Дельтаедри
багатогранник, всі грані якого є правильними трикутниками З Вікіпедії, вільної енциклопедії
Remove ads
Дельтаэдр — це багатогранник, всі грані якого є правильними трикутниками. Назву взято від грецької великої літери дельта (), яка має форму рівностороннього трикутника. Існує нескінченно багато дельтаедрів, але з них лише вісім опуклі, і вони мають 4, 6, 8, 10, 12, 14, 16 і 20 граней[1].


Нижче перелічено числа граней, ребер і вершин для кожного з восьми дельтаедрів.
Remove ads
Опуклі дельтаедри
Узагальнити
Перспектива
Всього існує 8 опуклих дельтаедрів[2], 3 з яких є платоновими тілами, а 5 — багатогранниками Джонсона.
У дельтаедра з 6 гранями деякі вершини мають ступінь 3, а деякі — ступінь 4. У дельтаедрів з 10, 12, 14 і 16 гранями деякі вершини мають ступінь 4, а деякі — ступінь 5. Ці п'ять неправильних дельтаедрів належать до класу правильногранних багатогранників — опуклих багатогранників з гранями у вигляді правильних багатокутників.
Не існує опуклого дельтаедра з 18 гранями[3]. Однак ікосаедр зі стягнутим ребром[en] є прикладом октаедра, який можна зробити опуклим з 18 неправильними гранями, або з двома наборами по три рівносторонніх трикутники, що лежать в одній площині.
Remove ads
Нестрого опуклі випадки
Узагальнити
Перспектива
Існує нескінченно багато дельтаедрів з копланарними (належними одній площині) трикутниками. Якщо множини копланарних трикутників вважати однією гранню, можна нарахувати менше граней, ребер і вершин. Копланарні трикутні грані можуть бути злиті в ромбічні, трапецієподібні, шестикутні або інші рівносторонні багатокутні грані. Кожна грань має бути опуклим поліамондом, таким як ,
,
,
,
,
,
і
, …[4]
Деякі невеликі приклади
Remove ads
Неопуклі дельтаедри
Неопуклих і тороїдальних дельтаедрів існує нескінченно багато.
Приклад дельтаедра з самоперетинами граней:
- Великий ікосаедр — тіло Кеплера — Пуансо, з 20 трикутниками, що перетинаються
Інші неопуклі дельтаедри можна отримати шляхом додавання пірамід до граней всіх 5 правильних багатогранників:
Інші нарощення тетраедрів:
Також шляхом додавання до граней перекинутих пірамід:
Примітки
Література
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads