Багатовимірний нормальний розподіл (чи багатовимірний гаусів розподіл) у теорії ймовірностей — це узагальнення одновимірного нормального розподілу для випадку із багатьма вимірами. Відповідно до одного із визначень стверджують, що вектор випадкових величин має k-варіативний нормальний розподіл якщо кожна лінійна комбінація його k компонент має одновимірний нормальний розподіл. В основному його важливість випливає із узагальнення центральної граничної теореми для багатьох вимірів. Багатовимірний нормальний розподіл часто використовують аби описати, принаймні наближено, будь-яку множину (можливо) корельованихвипадкових величин із дійсними значенням, кожна з яких скупчується довкола середнього значення.
Коротка інформація Багатовимірний нормальний розподіл, Параметри ...
Багатовимірний нормальний розподіл
Множина точок, що представляють елементарні події багатовимірного нормального розподілу із і , разом з якими показано еліпс розміром в 3-сігми, два маргінальні розподіли і дві 1-вимірні гістограми.
Вектор є вектором середніх значень , а — його коваріаційна матриця
У випадку , багатовимірний нормальний розподіл зводиться до звичайного нормального розподілу.
Якщо випадковий вектор має багатовимірний нормальний розподіл, то пишуть .
Якщо вектор має багатовимірний нормальний розподіл, то його компоненти мають одновимірний нормальний розподіл. Зворотне, узагалі говорячи, невірно (див. приклад [Архівовано 15 грудня 2012 у Wayback Machine.])!
Якщо випадкові величини мають одномірний нормальний розподіл і спільно незалежні, те випадковий вектор має багатовимірний нормальний розподіл. Матриця коваріацій такого вектора діагональна.
Якщо має багатовимірний нормальний розподіл, і його компоненти попарно некорельовані, то вони незалежні. Однак, якщо тільки компоненти мають одномірний нормальний розподіл і попарно не корелюють, те звідси не випливає, що вони незалежні.
Контрприклад. Нехай , а з рівними ймовірностями. Тоді якщо , те кореляція і дорівнює нулю. Однак, ці випадкові величини залежні.
Багатовимірний нормальний розподіл стійко щодо лінійних перетворень. Якщо , а — довільна матриця розмірності , то
де це k-вимірний вектор стовпець дійсних чисел і це детермінант для , відомий також як узагальнена дисперсія. Вищенаведене рівняння спрощується до аналогічного рівняння, що відповідає одновимірному нормальному розподілу якщо є матрицею розміром (тобто єдиним дійсним числом).
Циркулярно-симетрична версія комплексного нормального розподілу має дещо відмінну форму.
Кожен окіл ізо-густини—окіл точок в k-вимірному просторі, в кожній з яких буде деяке стале значення густини —є еліпсом або його узагальненням для більших вимірів; оскільки багатовимірний нормальний розподіл є особливим випадком еліптичних розподілів.
В описовій статистиці відомо як відстань Махаланобіса, яка задає відстань обраної точки від середнього . Зауважте, що у випадку коли , розподіл зводиться до одновимірного нормального розподілу, і відстань Махаланобіса зводиться до абсолютного значення стандартної оцінки.
Біваріативний випадок
У 2-вимірному несингулярному випадку (k = rank(Σ) = 2), функція густини імовірності для вектору [XY]′ є наступною:
де ρ— кореляція між X і Y і
де і . В такому випадку,
У біваріативному випадку, перша еквівалентна умова встановлення нормальності багатовимірного розподілу може бути менш сувора: для того, щоб зробити висновок чи є вектор [X Y]′ біваріативно нормальним достатньо перевірити чи зліченно велика кількість відмінних лінійних комбінацій X і Y є нормально розподілені.[2]
Біваріативні околи ізо-густини на площині x,y є еліпсами. Із збільшенням абсолютного значення коефіцієнту кореляції ρ, ці околи будуть сплющуватися до наступної прямої:
Це пояснюється тим, що якщо в даному виразі sgn(ρ) замінити на ρ, воно є найкращим лінійним незміщеним передбаченням[en] для Y, що задане значенням X.[3]
Нехай — послідовність незалежних і однаково розподілених випадкових векторів, кожний з який має середнє і невироджену матрицю коваріацій . Позначимо через вектор часткових сум.
Тоді при має місце збіжність розподілів векторів , де має розподіл .
В умовах багатовимірної центральної граничної теореми розподіл будь-яких неперервних функцій збігається до розподілу . Як нам буде потрібна тільки .
Наслідок
В умовах багатовимірної центральної граничної теореми має місце збіжність .
В іншому мовному розділі є повніша стаття Multivariate normal distribution(англ.). Ви можете допомогти, розширивши поточну статтю за допомогою перекладу з англійської.(грудень 2021)
Перекладач повинен розуміти, що відповідальність за кінцевий вміст статті у Вікіпедії несе саме автор редагувань. Онлайн-переклад надається лише як корисний інструмент перегляду вмісту зрозумілою мовою. Не використовуйте невичитаний і невідкоригований машинний переклад у статтях української Вікіпедії!
Машинний переклад Google є корисною відправною точкою для перекладу, але перекладачам необхідно виправляти помилки та підтверджувати точність перекладу, а не просто скопіювати машинний переклад до української Вікіпедії.
Не перекладайте текст, який видається недостовірним або неякісним. Якщо можливо, перевірте текст за посиланнями, поданими в іншомовній статті.