Remove ads
З Вікіпедії, вільної енциклопедії
Білінійне відображення — це відображення декартового добутку V × W в X
що володіє властивістю лінійності за кожним зі своїх аргументів.
- це лінійне відображення від до . Іншими словами, коли ми тримаємо перший запис білінійного відображення фіксованим, дозволяючи другому запису змінюватися, результат є лінійним оператором і аналогічно, коли ми тримаємо другий запис фіксованим. У випадку Таке відображення задовольняє наступним властивостям.
and . Якщо V = W, і ми маємо B(v, w) = B(w, v) для всіх v, w in V, то ми говоримо , що B є симетричним . Якщо X - базове поле F , то відображення називають білінійною формою, яка добре вивчена (див., Наприклад, скалярний добуток, внутрішній добуток і квадратична форма).
Роботи визначення без будь - яких змін , якщо замість векторних просторів над полем F , ми використовуємо модулі над комутативним кільцем R. Він узагальнює n-ари функції, де власний термін є мультилінійним. Для некомутативних кілець R і S, лівого R -модуля M і правого S -модуля N білінійне відображення - це відображення B : M × N → T з T (R, S) - бімодуля , і для якої будь-який n в N , m ↦ B(m, n) - R - модульний гомоморфізм, і для будь-якого m в M , n ↦ B(m, n) - модульний гомоморфізм. Це задовольняє
для всіх m в M , n в N , r в R і s в S , а також B, який є адитивним у кожному аргументі.
Це незавершена стаття з математики. Ви можете допомогти проєкту, виправивши або дописавши її. |
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.