ядра галактик, де відбуваються явища, які неможливо пояснити властивостями зір і газово-пилових комплексів, що утворюють ці галактики З Вікіпедії, вільної енциклопедії
Активні ядра галактик — ядра галактик, в яких спостерігаються процеси, що не можна пояснити властивостями зір та газово-пилових комплексів, з яких ці галактики складаються.
Галактичні ядра мають ознаки активності, якщо[1]:
Прояви перелічених особливостей можуть бути різними, галактики можуть виявляти не всі перелічені ознаки, а лише деякі з них[2].
Традиційно їх поділяються на чотири класи: сейфертівські галактики, радіогалактики, лацертиди та квазари. Однак, існують також інші класифікаційні схеми. Зокрема, іноді об'єднують лацертиди та групу квазарів з поляризованим випромінюванням в один клас блазарів[2].
Ранні фотографічні спостереження близьких галактик виявили деякі характерні ознаки випромінювання АЯГ, хоча тоді ще не було фізичного розуміння природи феномену АЯГ. Деякі ранні спостереження включають першу спектроскопічну реєстрацію емісійних ліній у ядрах NGC 1068 і Мессьє 81 Едвардом Фатом (опубліковано в 1909) і відкриття джету у Мессьє 87 Хебером Кертісом (1918). У подальших спектроскопічних дослідженнях ряду астрономів, зокрема, Весто Слайфера, Мілтона Хюмасона і Ніколаса Маяла, зазначено наявність незвичайних емісійних ліній у деяких ядрах галактик. У 1943 Карл Сейферт опублікував статтю, у якій він описав спостереження сусідніх галактик з яскравими ядрами, що випромінюють у незвичайно широких лініях. Галактики, що спостерігалися у рамках цього дослідження, включають NGC 1068, NGC 4151, NGC 3516, і NGC 7469. Активні галактики, що подібні до вказаних, відомі як сейфертівські галактики.
Розвиток радіоастрономії дав великий поштовх до розуміння АЯГ. Деякі з перших радіоджерел є сусідніми активними еліптичними галактиками (Мессьє 87, Центавр А). 1954 року Вальтер Бааде і Рудольф Мінковський ототожнили радіоджерело Лебідь А з припливно деформованою галактикою, що має незвичайний спектр з емісійними лініями і швидкість віддалення 16700 км/с. Радіоогляд 3C призвів до подальшого прогресу у відкритті нових радіоджерел і їх ототожненні з джерелами у видимому діапазоні. На фотографіях деякі з цих об'єктів виглядали точкоподібними або зореподібними, тому вони були класифіковані як квазізоряні радіоджерела (пізніше скорочення "квазари"). Великим проривом стало визначення червоного зсуву квазара 3C 273 Мартеном Шмідтом (1963). Шмідт зазначив, що якщо цей об'єкт позагалактичний (перебуває поза Чумацьким Шляхом, на космологічній відстані), то велике значення його червоного зміщення (z=0,158) означає, що він є ядром галактики, яка більш ніж у 100 разів потужніша за відомі тоді радіогалактики. Невдовзі потому оптичні спектри були використані для вимірів червоних зміщень усе зростаючої кількості квазарів, зокрема, 3C 48, який більш віддалений і має червоне зміщення 0,37. Велетенська світність квазарів і їх незвичайні спектральні властивості вказують, що джерелом їх енергії не можуть бути звичайні зорі. Припущення про акрецію газу на надмасивну чорну діру як джерело енергії квазарів висунули Едвін Солпітер і Яків Зельдович у 1964. У 1969 Дональд Лінден-Белл припустив, що сусідні галактики містять у центрі надмасивні чорні діри — залишки згаслих квазарів —, і що акреція на чорну діру є джерелом енергії незоряного випромінювання сусідніх сейфертівських галактик. У 1960-х і 1970-х перші рентгенівські астрономічні спостереження показали, що сейфертівські галактики й квазари є потужними джерелами рентгенівського випромінювання, яке походить із внутрішніх ділянок акреційного диску навколо чорної діри[джерело?].
В наш час[коли?] АЯГ є важливим напрямком спостережних і теоретичних астрофізичних досліджень. Дослідження АЯГ включають використання спостережних оглядів для пошуку АЯГ у широкому діапазоні світностей і червоних зміщень, перевірку моделей космічної еволюції і росту чорних дір, вивчення фізики акреції на чорні діри і електромагнітного випромінювання АЯГ, вивчення властивостей джетів і викидів речовини з АЯГ, а також вивчення впливу акреції на чорну діру і квазарної активності на еволюцію галактики[джерело?].
Достеменно невідомо, що є причиною незвичайної поведінки активних ядер і чи зумовлена активність галактик різних класів єдиним механізмом, чи якісно різними. В наш час загальноприйнятою є теорія акреційного диску навколо надмасивної чорної діри[2]. Згідно неї активність ядра обумовлена акрецією на компактний, дуже масивний об'єкт (від 106 до 109 мас Сонця) у галактичному ядрі (чорна діра). На початку досліджень АЯГ розглядалися наступні теорії [3]:
У стандартній моделі активних ядер галактик акреційний диск формує речовина, що рухається поблизу центральної чорної діри. Тертя часток змушує матерію рухатися до внутрішніх шарів диска, а кутовий момент обертання виштовхує їх назовні, що призводить до нагрівання диска. Теоретично спектр акреційного диску навколо надмасивної чорної діри матиме максимуми в оптичному й ультрафіолетовому діапазонах. А корона з гарячого матеріалу, піднесеного над акреційним диском, може викликати утворення рентгенівських фотонів за рахунок ефекту зворотного комптонівського розсіювання. Потужне випромінювання акреційного диску збуджує холодні частинки міжзоряного середовища, що обумовлює емісійні лінії в спектрі. Значна частина енергії, що випромінюється активним ядром, може поглинатися й перевипромінюватися в інфрачервоному (та інших діапазонах) пилом і газом навколо ядра.
Ця модель якісно пояснює спостережувану кореляцію потоків у неперервному спектрі і широких водневих лініях, а також існування запізнення між ними. Таким чином, проблема зводиться до двох основних питань: який механізм випромінювання неперервного спектру і яким саме чином це випромінювання переробляється у випромінювання інших спектральних діапазонів. Спостережуване в КрАО і закордонних обсерваторіях запізнювання довгохвильового випромінювання континууму по відношенню до короткохвильового може свідчити про те, що світіння більшості активних ядер обумовлено сильним тертям і розігрівом газу акреційного диску. Але надійних доказів цьому досі немає. З іншого боку, світіння групи об'єктів типу BL Ящірки, може бути зумовлено виключно синхротронним випромінюванням релятивістського газового джета, спрямованого вздовж осі обертання диска у напрямку до спостерігача[джерело?]. Багаторічний спектральний моніторинг, проведений деякими обсерваторіями, зокрема, з кінця 1980-х років у КрАО, спільно з розвитком методу ревербераційного аналізу дозволив припустити, що випромінювання широких емісійних ліній водню виникає в газових хмарах, які рухаються кеплерівськими орбітами приблизно в одній площині та утворюють зовнішній диск. Але загальної згоди серед фахівців з цього приводу поки немає. Останнім часом у дослідженнях особлива увага приділяється вивченню взаємозв'язку між випромінюванням у рентгенівському та оптичному діапазонах. Згідно з даними кримських астрономів, джерело рентгенівського випромінювання має перебувати в центрі над диском, перевипромінюється ця енергія у видимій ділянці спектра. Результати цих та інших досліджень опубліковано в книзі, яка містить матеріали проведеної в КрАО конференції[18].
Незважаючи на певний прогрес, досягнутий у вивченні активних галактик, багато проблем і завдань залишаються невирішеними, наприклад, такі як пояснення змінності профілів широких водневих ліній, природа їх у деяких галактиках, кінематика й динаміка газу в області диска, підвищення точності визначення мас центральних чорних дір і т. ін[джерело?]. Незрозумілим залишається також питання чи є галактики з активними ядрами особливим класом об'єктів, чи це лише активна стадія еволюції для всіх нормальних галактик[2].
Seamless Wikipedia browsing. On steroids.