Loading AI tools
Sinir sisteminin yönlerini ölçmek ve görselleştirmek için bir dizi teknik Vikipedi'den, özgür ansiklopediden
Nörogörüntüleme veya beyin görüntüleme; sinir sisteminin yapısını, işlevini veya farmakolojisini doğrudan veya dolaylı yollarla görüntülemek için çeşitli tekniklerin kullanımıdır. Tıp, sinirbilim ve psikolojide kullanımına görece yeni başlanan bir disiplindir.[1] Klinik ortamda nörogörüntülemenin yapılmasında ve yorumlanmasında görevli hekimler de nöroradyolog olarak adlandırılır.
Nörogörüntüleme kabaca iki kategoriye ayrılır:
Nörogörüntülemenin tarihçesi İtalyan sinirbilimci Angelo Mosso’nun, duygusal ve entelektüel etkinlikler esnasında kanın beyindeki dağılımını girişimsel olmayan (cildin bütünlüğünü bozmayan) şekilde ölçen “insan dolaşım dengesi” aletine kadar uzanıyor.[2]
1918'de Amerikan beyin cerrahı Walter Dandy, ventrikülografi isimli bir teknik ortaya çıkardı. Beyindeki ventriküler sistemin X-Ray görüntüleri, filtrelenmiş havanın beyinde lateralventriküllere enjekte edilmesiyle elde edildi. Dandy, aynı zamanda subaraknoid boşluğa bel omurundan enjekte edilen havanın serebralventriküllere girebildiğini ve normalde beyin omurilik sıvısı içeren bölgeleri ortaya çıkardığını gözlemledi. Bu teknik de pnömoensefalografi (beyindeki beyin-omurilik sıvısını boşaltıp yerine hava enjekte ederek X-Ray görüntülerinde beynin daha net gözükmesini sağlayan bir teknik) olarak adlandırıldı.
1927'de Egas Moniz, beyindeki hem normal hem anormal damarları yüksek eş değerlikte görüntülemeyi sağlayan beyin anjiyografisi isimli metodu ortaya çıkardı.
1970'lerin başında Allan McLeod Cormack ve Godfrey Newbold Hounsfield bilgisayarlı tomografiyi (BT) buldu ve böylece beynin araştırma ve tanıya yönelik çok daha detaylı anatomik görüntüleri elde edilmeye başlandı. Cormack ve Hounsfield bu teknikle 1979'da Nobel Fizyoloji veya Tıp Ödülünü kazandı. 1980'lerin başında radyoligantların geliştirilmesiyle tek foton emisyonlu bilgisayarlı tomografi ve pozitron emisyon tomografisi gibi teknikler ortaya çıkarıldı.
Yaklaşık aynı zamanlarda Peter Mansfield ve Paul Lauterbur gibi araştırmacılar tarafından manyetik rezonans görüntüleme tekniği (MRI veya MR taraması) geliştirildi ve bu teknik 2003'te Nobel Fizyoloji veya Tıp Ödülüne layık görüldü. 1980'lerin başında MRI klinikte kullanılmaya başlandı ve 1980'ler boyunca tekniğe bazı düzeltmeler ve tanısal MR uygulamaları getirildi. Bilim insanları daha sonra PET'le ölçülen kan akışındaki büyük değişimlerin aynı zamanda doğru tipteki bir MRI tekniği ile ölçülebileceğini öğrendi. Bu şekilde işlevsel (fonksiyonel) manyetik rezonans görüntüleme (fMRI) doğdu ve 1990'lardan beri fMRI düşük girişimselliği, kişiyi radyasyona maruz bırakmaması ve görece yaygın erişilebilirliğiyle beyin görüntüleme ve haritalama alanında üstünlük kurmuştur.
2000'lerin başında nörogörüntüleme alanı, işlevsel beyin görüntülemenin bazı uygulamalarının gerçekleştirilebileceği bir noktaya erişti. Bu bağlamda ana uygulama alanı henüz basit formlardaki beyin-bilgisayar arayüzleridir.
Nörogörüntüleme, hekimin nörolojik muayene sonucunda sinirsel bir hastalığı olan veya olmasından şüphelenilen bir hastayı daha detaylı incelemeye gerek duymasını halinde kullanılır.
Kişilerin tecrübe edebileceği yaygın sinirsel problemlerden biri de bayılmadır.[3] Bu durumda hastanın geçmişi sinirsel semptomlara işaret etmiyorsa teşhiste nörolojik muayene kullanılır fakat rutin nörogörüntülemeye gerek duyulmaz çünkü bu durumlarda bayılma sebebinin merkezi sinir sisteminde bulunma ihtimali son derece düşüktür ve hasta büyük ihtimalle nörogörüntüleme prosedürünün yararını görmeyecektir.[4]
Nörogörüntüleme sürekli baş ağrısı olan ve migren tanısı konmuş hastalar için de önerilmez. Çalışmalar migrenin hastalarda intrakraniyal (intracranial) hastalık riskini artırmadığını ve papil ödemi gibi diğer problemler olmadan migren teşhisi konulan hastalarda nörogörüntülemenin gerekli olmadığını göstermektedir. Bununla birlikte hekim, özenli bir tanı sürecinde baş ağrısının migren dışında bir sebebi olup olmadığını ve varsa nörogörüntülemenin gerekebileceğini dikkate almalıdır.[5]
İntrakraniyal tümörler, arteriyövenöz anomaliler ve ameliyatla tedavi edilebilecek diğer durumlarda BT, MRI ve PET rehberliğinde yapılan stereotaktik ameliyatlar, nörogörüntülemenin kullanımını gerektiren bir diğer alandır.[6][7][8][9]
Bilgisayarlı tomografi (BT) ya da bilgisayarlı aksiyal tomografi (BAT), kafaya çok sayıda farklı açıdan X-Ray ışınlarının gönderildiği bir tarama tekniğidir. Yaygın olarak beyindeki zedelenmeleri hızlıca görüntülemek için kullanılır. BT taramaları, beynin küçük bir kısmında bir X-Ray ışınının ne kadarının soğurulduğunu bulmak için sayısal integral hesaplamaları (ters Radon dönüşümü gibi) yapan bir bilgisayar programı kullanır. Bu bilgi yaygın olarak beyin kesitlerine ait görüntülerin elde edilmesi için kullanılır.[10]
Dağınık optik görüntüleme veya dağınık optik tomografi, vücuda ait görüntüler oluşturmak için kızılötesine yakın dalgaboylarında ışık kullanan bir medikal görüntüleme tekniğidir. Hemoglobinin optik soğurmasını ölçen bu teknik, hemoglobinin soğurma spektrumunun oksijene bağlı olup olmamasına bağlı olarak değişmesini kullanır. Yüksek yoğunluklu dağınık optik görüntüleme (HD-DOT) ile işlevsel manyetik rezonans görüntüleme, iki teknikle de incelenen deneklerin görsel uyaranlara verdikleri tepkilerle ilgili bir çalışmada karşılaştırılmış ve güven verici ölçüde benzer sonuçlar elde edilmiştir.[11] HD-DOT aynı zamanda fMRI ile dil ile ilgili görevler ve dinlenme anındaki işlevsel bağlantısallık konularında da karşılaştırılmış durumda.[12]
Olaya Bağlı Optik Sinyal, optik fiberler aracılığıyla kızılötesi ışınlar yollayarak serebral korteksteki aktif bölgelerin optik özelliklerindeki değişimleri ölçen bir beyin tarama tekniğidir. Dağınık optik görüntüleme hemoglobinin optik soğurmasını ölçtüğü için kan akışına bağlı bir teknikken olaya bağlı optik sinyal direkt olarak nöronların aktif haldeyken ışığı saçmasında meydana gelen değişikliklerden faydalanır; böylece hücresel aktivitenin daha isabetli ölçümünü sağlar. Bu teknik beyinde gerçekleşen aktivitelerin lokasyonunu milimetreler düzeyinde, zamanını da milisaniyeler düzeyinde bir çözünürlükle tespit eder. Tekniğin en büyük problemi ise kafatasından en fazla birkaç santimetre derinliğinde ölçüm yapabilmesidir. Görece yeni, ucuz ve girişimselci-olmayan bir tekniktir. Urbana-Champaign'deki Illinois Üniversitesinde geliştirilmiş olup buradaki Bilişsel Nörogörüntüleme Laboratuvarında Dr. Gabriele Gratton ve Dr. Monica Fabiani tarafından kullanılmaktadır.
Manyetik rezonans görüntüleme, iyonize edici radyasyon ve radyoaktif izleyiciler olmadan beyin yapılarının yüksek kalitede iki veya üç boyutlu görüntülerini oluşturmak için manyetik alanlar ve radyo dalgaları kullanır.
Fonksiyonel manyetik rezonans görüntüleme (fMRI) ve arteriyel spin etiketleme teknikleri, beyinde sinirsel aktiviteye bağlı olarak değişen kan akışınını görüntüleyebilmek için oksijene bağlanmış ve bağlanmamış hemoglobinin paramanyetik özelliklerinden faydalanır. Bu da dinlenme durumunda veya çeşitli görevlerin gerçekleştirilmesi sırasında hangi beyin bölgelerinin aktifleştiğini (ve nasıl aktifleştiklerini) görüntülemeyi sağlar. Oksijen durumu (oxygenation) hipotezine göre bilişsel veya davranışsal aktiviteler sırasında hangi bölgelerdeki kan akışında oksijen miktarında değişim gözleniyorsa, o bölgeler o sıradaki aktiviteyle direkt olarak ilişkilendirilebilir.
Çoğu fMRI tarayıcısı deneklere farklı görsel, işitsel veya dokunsal uyaranlar verilebilmesine ve bir tuşa basmak veya oyun konsolunu hareket ettirmek gibi farklı hareketleri yapabilmelerine olanak tanıyor. Sonuç olarak fMRI; algı, düşünce ve hareketle ilişkili beyin yapılarını ve süreçleri ortaya çıkarmak için kullanılabiliyor. fMRI'ın şu anki çözünürlüğü 2-3 milimetre ve bu sınır sinirsel aktiviteye bağlı oluşan hemodinamik tepkinin uzamsal yayılma göstermesinden (ve hemoglobinin oksijene bağlılık oranının sadece aktif hücrenin olduğu noktalarda değil, çevre bölgelerde de değişmesinden) kaynaklanıyor. Beyindeki aktivite örüntülerinin incelenmesinde fMRI, PET yönteminin yerini almış durumda. Fakat PET; radyoaktif izleyiciyle işaretlenmiş reseptör ligandlarını (reseptör ligandı, bir reseptöre bağlanan herhangi bir kimyasaldır) kullanarak beyinde belirli nörotransmiterlere bağlanan ilgili reseptörleri tespit edebilmesi avantajına sahip.
Sağlıklı bireylerle yapılan araştırmaların yanı sıra, hastalık teşhisinde de fMRI giderek daha fazla kullanılıyor. fMRI kan akışındaki oksijen seviyesine oldukça hassas olduğundan, beyinde iskemi (dokuya giden kan miktarının aşırı düşük olması durumu) veya inme sonucu meydana gelen erken değişikliklere de son derece duyarlı. Bazı inme türlerinde pıhtıları dağıtacak maddeler ilk birkaç saatte kullanılabilirken, sonrasında bu maddelerin kullanımı tehlikeli olmaya başlıyor. Dolayısıyla nörolojide inmenin belli türlerinin erken teşhisi önem kazanıyor. fMRI'da görülen değişimler, bu maddelerle tedavi uygulayıp uygulamama kararına yardımcı olabiliyor. Ayrıca fMRI teknikleri, deneğin belli bir anda bir görüntü setinden hangisini gördüğünü %72 ilâ %90 arasındaki bir eşdeğerlikle tahmin edebiliyor[13] (aynı tahminin şansla doğru çıkması ihtimali %0.8[14]).
Manyetoensefalografi (MEG), Süperiletken Kuantum Girişim Cihazı (SQUID) gibi mıknatıs ölçerlerle beyinde elektriksel aktivite sonucu oluşan manyetik alanları ölçen bir görüntüleme tekniğidir. MEG; fMRI'a kıyasla nöronlardaki elektriksel aktiviteyi çok daha direkt olarak ölçer, yüksek zamansal çözünürlüğe fakat düşük uzamsal çözünürlüğe sahiptir. Sinirsel aktivite sonucu üretilen manyetik alanları ölçmenin avantajı, manyetik alanların elektroensefalografide (EEG) ölçülen elektrik alanların aksine çevre dokulardan (özellikle kafa derisi ve kafatası) daha az etkilenmesidir. Spesifik olarak elektriksel aktivite sonucu üretilen manyetik alanların çevredeki kafa dokusundan etkilenmediği, kafanın her biri homojen ve izotropik (yönbağımsız) iletkenler olan iç içe geçmiş küresel kabuklar olarak modellenmesiyle gösterilebilir. Fakat gerçek kafalar küresel değildir ve (özellikle beyaz madde ve kafatasının) iletkenlikleri büyük ölçüde anizotropiktir. Kafatası anizotropisinin MEG'ye olan etkisi ihmal edilebilir ölçüdeyken (EEG'nin aksine), beyaz madde anizotropisininbeynin derin bölgelerindeki kaynaklardan yapılan MEG ölçümlerini önemli ölçüde etkilediği bulunmuştur.[15] Fakat bu çalışmada kafanın da homojen bir biçimde anizotropik olduğu varsayılmıştır ki bu gerçek kafalar için doğru değildir. Dolayısıyla MEG'nin kafatası anizotropisinden de etkilenmesi olasıdır,[16] fakat bu etki EEG'deki kadar yüksek değildir.
MEG'nin; bir hastalığı lokalize etmede cerrahlara, beyinde belli yolakların işlevini belirlemede de araştırmacılara yardımcı olması gibi birçok kullanım alanı vardır.
Pozitron Emisyon Tomografisi (PET), kana enjekte edilen radyoaktif olarak işaretlenmiş ve metabolik olarak aktif kimyasallardan yayılan radyasyonu ölçer. Ölçülen emisyon verileri bilgisayar tarafından bu kimyasalların beyindeki dağılımına ait 2 veya 3 boyutlu görüntüler oluşturacak biçimde işlenir.[17] Pozitron yayan radyoizotoplar bir tür parçacık hızlandırıcıda (kiklotron) üretilir ve kimyasallar bu radyoaktif atomlarla işaretlenir. Radyoaktif işaretleyici olarak adlandırılan bu bileşik damardan enjekte edilir ve beyne ulaşır. PET tarayıcılarındaki sensörler, işaretleyici madde beynin çeşitli bölgelerinde birikirken o bölgelerdeki radyoaktiviteyi ölçer. Bir bilgisayar, sensörler tarafından toplanan verileri kullanarak, ilgili maddenin beynin hangi bölgeleri tarafından kullanıldığını gösteren 2 veya 3 boyutlu renklendirilmiş görüntüler oluşturur. Özellikle nörotransmitter aktivitesinin farklı yönlerini haritalamak için kullanılan ligandlar oldukça kullanışlı olmakla beraber, PET'te en yaygın olarak kullanılan işaretleyici, glikozun işaretlenmiş bir formu olan Fludeoxyglucose'dur.
PET taramasının en büyük avantajı; farklı bileşiklerin çalışan beyinde kan akışını, oksijen seviyesini ve glikoz metabolizmasını gösterebilmesidir. Bu ölçümler beynin çeşitli bölgelerindeki aktivite miktarını yansıtır ve beynin nasıl çalıştığı hakkında daha fazla şey öğrenmeyi sağlar. PET taramaları piyasaya ilk çıktığında, uzamsal çözünürlük ve tamamlanma süresi bakımından (30 saniye gibi az bir süre) diğer tüm metabolik görüntüleme yöntemlerinden üstündü. Uzamsal çözünürlüğün gelişmesi, belirli bir görev esnasında beynin hangi bölgelerinin aktifleştiği konusunda daha iyi çalışmaların yapılmasını sağladı. PET taramasının en büyük sorunu, radyoaktivite hızlıca azaldığı için ancak kısa süreli görevlerin incelenebilmesiydi.[18] fMRI teknolojisinden önce PET, işlevsel beyin görüntüleme (yapısal görüntülemenin aksine) için tercih edilmekteydi ve bugün de sinirbilime büyük katkılar sağlamaya devam ediyor.
PET taramaları beyin hastalıklarının teşhisinde de kullanılmaktadır. Bunun en önemli sebebi demans hastalıklarına (Alzheimer gibi) yol açan beyin tümörleri, inmeler ve nöronlara zarar veren hastalıkların hepsinin beyin metabolizmasında ciddi, dolayısıyla PET taramalarında kolayca görülebilen değişimlere sebep olması. PET taramasının muhtemelen en kullanışlı olduğu evreler, belli bazı demans hastalıklarının (Alzheimer ve Pick hastalıkları gibi) erken evreleridir. Bunun sebebi de erken evredeki hasarın beyinde fazla dağılmış olması, beyin hacmi ve kaba yapısında çok az değişime yol açması ve bu tarz hasarların BT veya MRI görüntülerinde kortikalatrofinin (körelme) “normal” miktarlarından, yani yaşlanmayla oluşan fakat klinik demans hastalıklarına yol açmayan durumdan ayırt edilememesidir.
Tek-foton emisyon BT (SPECT), PET'e benzer bir yönteme sahiptir.Gama ışını yayan radyoizotoplar ile bir bilgisayarın beynin aktif bölgelerine ait 2 veya 3 boyutlu görüntüler oluşturmak için kullandığı verileri kaydeden gamma kamerası kullanır.[19] SPECT, bir radyoaktif işaretleyicinin enjeksiyonuna dayanır ve bu madde beyin tarafından hızlıca alınır fakat tekrar dağıtılmaz. SPECT işaretleyicisinin beyin tarafından alınması, enjeksiyon anında serebral dolaşıma bağlı olarak 30 ilâ 60 saniyede tamamlanır. Bu da SPECT'i, normalde hastaların hareket etmeleri ve nöbet tiplerinin çeşitliliği nedeniyle zor yapılabilen epilepsi görüntülemelerine uygun kılar. Radyoaktif işaretleyici nöbet esnasında enjekte edildiği sürece SPECT, kan akışının epilepsi anındaki görüntüsünü verir. SPECT'in önemli bir sorunu, MRI'a göre düşük olan uzamsal çözünürlüğüdür (yaklaşık 1 cm). Günümüzde ikili dedektör başlığı olan SPECT makineleri yaygın olarak kullanılmaktadır. Beyin yapısının tomografik olarak yeniden inşası (çoğunlukla beynin anlık işlevsel fotoğraflarını elde etmek için), kafatasının etrafında dönen dedektör başlıklarından çıkan çoklu projeksiyonlara ihtiyaç duyar. Bazı araştırmacılar çözünürlüğü artırıp görüntüleme için gereken zamanı azaltmak adına 6 ilâ 11 tane dedektör başlığı içeren SPECT makineleri geliştirmiştir.[20][21]
SPECT de PET gibi, demans hastalığına yol açan çeşitli süreçleri ayırt etme amacıyla giderek daha fazla kullanılmaktadır. PET, FDG gibi yarı ömrü en fazla 110 dakika olan işaretleyicileri kullanmak durumundadır ve bunlar parçacık hızlandırıcılarda üretilebildiğinden oldukça pahalı olup PET'in gerçekleştirileceği yere ulaştırılma süreleri birkaç yarı ömrü geçerse kullanılmaları mümkün değildir. Öte yandan SPECT, yarı-ömrü çok daha uzun işaretleyicilerden (technetium-99m gibi) faydalanabilir ve sonuç olarak kullanıma çok daha elverişlidir.
fMRI, diğer tekniklere göre girişimsel-olmayan bir teknik olduğu için az ilâ orta derecede riskli olarak sınıflandırılır. fMRI, görüntüleme için kandaki oksijen seviyesine bağlı (blood oxygenation level dependent – BOLD) kontrastı kullanır. BOLD kontrastı vücutta doğal olarak oluşur, bu yüzden de benzer görüntüler elde etmek için radyoaktif işaretleyicilere ihtiyaç duyan diğer tekniklere göre çoğunlukla tercih edilir.[22] fMRI'ın kullanımı hakkında bir endişe, vücudunda protez, implant gibi metalik objeler bulunan kişilerde uygulanma durumudur. Bu objelerden yayılan manyetik rezonans (MR), tıbbi cihazların bozulmasına ve vücuda başka metallerin çekilmesine sebep olabilir. FDA, günümüzde tıbbi implant ve cihazları MR'a uygunluğuna göre; MR için güvenli, MR için güvenli değil ve duruma göre güvenli olarak üç kategori sunar.[23]
BT, 1970'lerde piyasaya çıkarılmıştır ve hızlıca en çok kullanılan görüntüleme tekniklerinden biri haline gelmiştir. BT taraması bir saniyenin altında gerçekleştirilebilir ve klinisyenler için hızlı sonuçlar sunar. Klinisyenler çoğunlukla birden fazla BT taraması alırlar; BT taraması istenen hastaların yüzde 30'u bir seferde en az 3 taramaya girer.[25] BT taramaları, hastaları geleneksek X-Ray ışınlarına göre 100 ilâ 500 kat daha fazla radyasyona maruz bırakır; radyasyon miktarı arttıkça daha yüksek çözünürlüklü görüntüler elde edilir.[26] Kullanımı basit olmakla beraber özellikle semptom göstermeyen hastalarda BT kullanımı, yüksek miktarda radyasyon sebebiyle bir endişe konusudur.[25]
PET taramalarında görüntüleme doğal biyolojik süreçlere değil, kana enjekte edilen (ve dolaşımla beyne ulaşan) yabancı bir madde sayesinde yapılır. Hastalara beyinde metabolizmaya katılan moleküllere eklenen radyoizotoplar enjekte edilir ve onlardan yayılan pozitronlar beyin aktivitesinin görüntülenmesini sağlar.[22] Hastanın PET taramasında maruz kaldığı radyasyon miktarı, yıl boyunca çevreden aldığı radyasyona göre daha düşük seviyededir. PET radyoizotoplarının yarı-ömürleri çok kısa olup (2 saat civarı) çabuk bozunduklarından, vücutta kalma süreleri de düşüktür.[27] Günümüzde beyin aktivitesini görüntülemede fMRI, PET'ten daha çok tercih edilir çünkü radyasyon içermez, zamansal çözünürlüğü PET'e göre daha yüksektir ve çoğu tıbbi ortamda daha kolayca bulunabilir.[22]
MEG ve EEG'nin yüksek zamansal çözünürlükleri, onları beyin aktivitesini milisaniyeler düzeyinde ölçmeye elverişli kılar. İki metodun da çalışması için hastanın radyasyona maruz bırakılması gerekmez. Beyindeki aktiviteyi ölçmek için EEG elektrotları nöronlarda üretilen elektrik sinyallerini tespit ederken, MEG bu elektrik sinyallerinin manyetik alanda yarattığı dalgalanmaları ölçer. MEG'nin yaygın olarak kullanılmasının önündeki bir engel ise pahalı oluşudur, sistemlerin fiyatı milyonlarca doları bulabilmektedir. EEG, çok daha düşük maliyetinden ötürü bahsedilen zamansal çözünürlüklere ulaşmak için çok daha yaygın olarak kullanılan bir yöntem. Bu iki tekniğin fMRI'a göre dezavantajı ise daha düşük uzamsal çözünürlüğe sahip olmalarıdır.[22]
Bazı bilim insanları, bilimsel dergilerde ve popüler basında “beyinde yeteneklerden, belirli belleklerden ve sevgi gibi duyguların üretilmesinden sorumlu bölgelerin keşfi” gibi beyin görüntüleme temelli iddiaları eleştirdi. Çoğu görüntüleme tekniği görece düşük çözünürlüğe sahip; tek bir üç boyutlu pikselin (voksel) içerisine yüz binlerce nöron sığdırılabiliyor. Ayrıca canlılarda birçok işlev için beynin birden fazla bölgesi kullanılıyor; bu da bahsedilen türden bir iddiayı hem kullanılan ekipmanın yetersizliğinden ötürü onaylanamaz kılıyor hem de bu tarz iddialar genelde beyin işlevlerinin anatomik olarak nasıl bölündüğü hakkında yanlış varsayımlara dayanıyor. Çoğu beyin işlevinin yalnızca çok fazla sayıda küçük beyin devresi incelenebildiğinde doğru olarak açıklanabileceği tahmin ediliyor. Beyin görüntülemeye dair çalışmaların çoğu aynı zamanda örnek hacminin düşüklüğü ve ekipmanın yeterince iyi kalibre edilememesi gibi, bu çalışmaların tekrarlanabilirliğini ortadan kaldıran teknik problemlere de sahip – büyük yankı uyandıracak bir makale veya haber üretebilmek adına bu tarz sorunlar ne yazık ki ihmal edilebiliyor. Bazı durumlarda beyin görüntüleme teknikleri ticari amaçlarla veya yalan dedektörü olarak kullanılabiliyor fakat bu yöntemler bilimsel olarak onaylanmış değil.[28]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.