Flavonoidler (veya biyoflavonoidler) (Latince flavus kelimesinden gelen sarı) bitki ve mantarsekonder metabolitlerinin bir sınıfıdır.
Kimyasal olarak, flavonoidler, iki fenil halkası (A ve B) ve bir heterosiklik halkadan (C) oluşan 15 karbonlu bir iskeletin genel yapısına sahiptir. Bu karbon yapısı C6-C3-C6 olarak kısaltılabilir. IUPAC terminolojisine göre[1][2] şu şekilde sınıflandırılabilirler:
Yukarıdaki üç flavonoid sınıfının hepsi keton içeren bileşiklerdir ve bu nedenle antoksantinlerdir (flavonlar ve flavonoller). Bu sınıf ilk olarak biyoflavonoid olarak adlandırıldı. Flavonoid ve bioflavonoid terimleri, keton olmayan polihidroksi polifenol bileşiklerini tanımlamak için daha geniş bir anlamda kullanılmıştır.Flavonoid omurgasındaki üç halkaya genellikle A, B ve C halkası denir. A halkası genellikle bir floroglusinol grubu içerir.
Ana madde: Flavonoid biyosentezi
Flavonoidler, bir amino asit olan fenilalaninin, 4-kumaroil-CoA üretmek için kullanıldığı, fenilpropanoid metabolik yolu ile sentezlenebilir.
Flavonoidler, birçok işlevi yerine getirmek için bitkilerde yaygın olarak bulunur. Flavonoidler, çiçeklenme için en önemli bitki pigmentleridir ve tozlanmaya yardımcı hayvanları çekmek için tasarlanmış yapraklarda sarı veya kırmızı-mavi pigmentleri üretir. Daha gelişmiş bitkilerde flavonoidler, UV filtrasyonu, simbiyotik azot fiksasyonu ve çiçek pigmentasyonunda rol oynar. Ayrıca kimyasal uyarıcı, fizyolojik düzenleyici ve hücre döngüsü inhibitörü olarak da işlev görebilirler. Konak bitkinin kökü tarafından salgılanan flavonoidler, bezelye, fasulye, yonca ve soya gibi baklagillerle simbiyotik ilişki kuran Rhizobia'ya yardımcı olur. Toprakta yaşayan Rhizobia, flavonoidleri algılayabilir ve bu da konak bitki tarafından, kök kıllarının deformasyonu, iyon akıları ve kök nodülünün oluşması gibi çeşitli hücresel tepkilere yol açabilen nod faktörlerinin salgılanmasını tetikler. Ek olarak, bazı flavonoidler, bitki hastalıklarına neden olan organizmalara karşı inhibitör aktiviteye sahiptir, örn. Fusarium oxysporum.[3]
Çeşitli bitkilerden 5000'den fazla doğal olarak oluşan flavonoid karakterize edilmiştir. Kimyasal yapılarına göre sınıflandırılmışlardır ve genellikle aşağıdaki alt gruplara ayrılırlar:[4]
İzoflavonlar -fenilkromen-4-one iskelet yapısındanır (2. karbon üzerinde hidroksil grubu olmadan).
Örnek: Genistein, Daidzein, Glycitein
İzoflavanlar
İzoflavandioller
İzoflavenler
Coumestanlar
Pterocarpanlar
Flavonoidler (özellikle kateşinler gibi flavonoidler) insan diyetinde en yaygın bulunan polifenolik bileşikler grubudur ve her bitkide bulunurlar.[6]Kuersetin gibi biyoflavonoidler olan flavonoller de her yerde bulunur, ancak daha az miktarlarda bulunurlar. Yüksek flavonoid içerikli yiyecekler arasında maydanoz, soğan, yaban mersini ve diğer yemişler, siyah çay, yeşil çay ve oolong çayı, muz, bütün narenciyeler, Ginkgo biloba, kırmızı şarap, karabuğday ve bitter çikolata (kakao içeriği %70 veya daha fazla).[7]
Maydanoz
Maydanoz, taze ve kurutulmuş maydanoz, flavon içerir.[8]
Her ne kadar flavonoidlerin potansiyel sağlık yararları üzerine devam eden araştırmalar olsa da, ne Amerika Gıda ve İlaç İdaresi (FDA) ne de Avrupa Gıda Güvenliği Otoritesi (EFSA) flavonoidler için herhangi bir sağlık iddiasını onaylamadı veya herhangi bir flavonoidi farmasötik ilaç olarak onaylamadı.[14][15][16]
In vitro
Flavonoidlerin in vitro çalışmalarda çok çeşitli biyolojik ve farmakolojik aktivitelere sahip olduğu gösterilmiştir. Örnekler arasında; anti-alerjik,[17]anti-enflamatuar,[17][18]antioksidan,[18]anti-mikrobiyal (antibakteriyel,[19][20]antifungal,[21][22] ve antiviral[21][22]), antikanser,[18][23] ve anti-diyabet aktiviteleri.[24] Flavonoidlerin ayrıca topoizomerazenzimleriniinhibe ettiği[25][26] ve in vitro çalışmalardaAkut lenfoblastik lösemi 1(MLL) genindeki DNA mutasyonlarını indüklediği gösterilmiştir.[27] Bununla birlikte, yukarıdaki vakaların çoğunda in vivo veya klinik araştırma yapılmamıştır ve bu aktivitelerin insan sağlığı üzerinde herhangi bir yararlı veya zararlı etkisi olup olmadığını söylemek mümkün değildir. Daha derinlemesine araştırılan biyolojik ve farmakolojik aktiviteler aşağıda açıklanmaktadır.
Antioksidan
Linus Pauling Enstitüsü ve Avrupa Gıda Güvenliği Otoritesi'nde yapılan araştırmalar, flavonoidlerin insan vücudunda (% 5'ten az) zayıf bir şekilde emildiğini, emilenlerin çoğunun hızlı bir şekilde metabolize edildiğini ve atıldığını göstermektedir.[16][28][29] Bu bulgular flavonoidlerin ihmal edilebilir sistemik antioksidan aktiviteye sahip olduğunu ve flavonoid açısından zengin gıdaların tüketiminden sonra görülen kanın antioksidan kapasitesindeki artışın doğrudan flavonoidlerden kaynaklanmadığını, ancak flavonoid depolimerizasyonu ve atılımından kaynaklanan ürik asit üretiminden kaynaklandığını göstermektedir.[30]
Enflamasyon
Enflamasyon, kanser, kardiyovasküler bozukluklar, diabetes mellitus ve çölyak hastalığı gibi sayısız lokal ve sistemik hastalığın olası bir kaynağı olarak gösterilmektedir.[31]
Ön çalışmalar flavonoidlerin anti-inflamatuar mekanizmaları reaktif oksijen veya azot bileşiklerini inhibe etme yetenekleri ile etkileyebileceğini göstermektedir.[32] Flavonoidlerin ayrıca siklooksijenaz, lipooksijenaz veya indüklenebilir nitrik oksit sentaz gibi serbest radikal üretimine katılan enzimlerin proenflamatuar aktivitesini inhibe ettiği[32][33] veya bir inme sonrasında bağışıklık hücrelerinde veya beyin hücrelerinde hücre içi sinyal yollarını modifiye ettiği görüşü önerilmiştir.[32][34]
Bir flavonoid sınıfı olan prosiyanidinlerin, ön araştırmada, araşidonik asit yolunun modülasyonu, gen transkripsiyonunun inhibisyonu, enflamatuar enzimlerin ekspresyonu ve aktivitesinin yanı sıra anti-enflamatuar aracıların salgılanmasını içeren anti-enflamatuar mekanizmalara sahip olduğu gösterilmiştir.[35]
Kanser
Flavonoid tüketimi ile kanserin önlenmesi/gelişmesi arasındaki ilişkiyi araştıran klinik çalışmalar, çoğu kanser türü için çelişkilidir, çünkü çoğu çalışma retrospektiftir ve küçük bir örnek boyutu kullanılmıştır.[36] İki belirgin istisna gastrik karsinom ve sigara ile ilişkili kanserlerdir. Diyetlerle flavonoid alımı, kadınlarda mide karsinomu riskinin azalmasıyla,[37] ve sigara içenlerde solunum yolu kanseri riskinin azalmasıyla ilişkilendirilmiştir.[38]
Kardiyovasküler hastalıklar
Diyetle alınan flavonoidlerden etkilenmesi muhtemel olan genel insan hastalıkları üzerinde en yoğun çalışılan, kardiyovasküler hastalık araştırmaları, hastalar veya hasta olmayan kişilerde incelenen aşağıdaki mekanizmaları ortaya koymuştur:[39][40][41][42][43]
pıhtılaşmayı, trombüs oluşumunu veya trombosit agregasyonunu inhibe eder
ateroskleroz riskini azaltır
arteriyel kan basıncını ve hipertansiyon riskini azaltır
kan damarı hücrelerinde oksidatif stresi azaltır
vasküler inflamatuar mekanizmaları onarır
endotel ve kılcal fonksiyonların iyileştirilmesi
kan lipit seviyelerini düzenler
karbonhidrat ve glikoz metabolizmasını düzenler
yaşlanma mekanizmalarını düzenler
Antibakteriyel
Flavonoidlerin doğrudan antibakteriyel aktiviteye, antibiyotiklerlesinerjistik aktiviteye ve çok sayıda in vitro ve sınırlı sayıda in vivo çalışmada bakteriyel virülans faktörlerini baskılama yeteneğine sahip olduğu gösterilmiştir.[19][44] Dikkate değer in vivo çalışmalar arasında,[45][46][47] oral kursetinin kobaylarda, grup 1 kanserojenHelicobacter pylori'ye karşı koruduğu bulgusudur.[47] Flavonoidlerin bakteriyel enfeksiyonun tedavisi için farmasötik ilaçlar olarak kullanılıp kullanılamayacağını veya diyet flavonoid alımının enfeksiyona karşı herhangi bir koruma sağlayıp sağlamadığını belirlemek için ek in vivo ve klinik araştırmalara ihtiyaç vardır.
Renk tayfı
Bitkilerdeki flavonoid sentezi, hem yüksek hem de düşük enerji radyasyonlarında açık renk spektrumları ile indüklenir. Düşük enerjili radyasyonlar fitokrom tarafından soğurulurken, yüksek enerjili radyasyonlar fitokromlara ek olarak karotenoidler, flavinler ve kriptokromlar tarafından soğurulur. Fitokrom aracılı flavonoid biyosentezinin fotomorfojenik süreciamaranthus, arpa, mısır, sorgum ve şalgamda gözlenmiştir. Kırmızı ışık flavonoid sentezini arttırır.[48]
Mikroorganizmalardan eldesi
Son araştırmalar, genetik olarak tasarlanmış mikroorganizmalardan flavonoid moleküllerinin verimli bir şekilde üretilebildiği gösterilmiştir.[49][50][51]
Tespit testleri
Shinoda testi
Dört parça magnezyum talaşı etanolik ekstrakta eklenir ve ardından birkaç damla doygun hidroklorik asit eklenir. Pembe veya kırmızı renk, flavonoidin varlığını gösterir.[52] Turuncudan kırmızıya değişen renkler flavonların varlığını, kırmızıdan koyu kırmızıya değişen renkler flavonoidlerin varlığını, koyu kırmızıdan macentaya değişen renkler flavononların varlığını gösterir.
Sodyum hidroksit testi
Yaklaşık 5mg bileşik su içinde çözülür, ısıtılır ve süzülür. Bu çözeltinin 2 ml'sine %10 sodyum hidroksit eklenir. Sarı bir renk oluşur. Seyreltik hidroklorik asit ilavesiyle sarı rengin kaybolması ve çözeltinin renksizleşmesi, flavonoidlerin varlığının bir göstergesidir.[53] p-Dimetilaminokinnamaldehit testi
Biradaki flavanoidler için, A-halkalarının kromojen p-dimetilaminosinnamaldehit (DMACA) ile reaksiyonuna dayanan kolorimetrik bir analiz geliştirilmiştir.[54]
Miktar tayini
Lamaison ve Carnet, bir numunenin toplam flavonoid içeriğinin belirlenmesi için bir test tasarlamıştır (AlCI3 yöntemi). Numunenin ve reaktifin uygun şekilde karıştırılmasından sonra, karışım 10 dakika oda sıcaklığında inkübe edilir ve çözeltinin absorbans değeri 440nm'de okunur. Flavonoid içeriği, mg/g kuersetin olarak ifade edilir.[55]
Yarı sentetik alterasyonu
İmmobilize Candida antarktika lipazı, flavonoidlerin regioselektifasilasyonunu katalize etmek için kullanılabilir.[56]
Galeotti, F; Barile, E; Curir, P; Dolci, M; Lanzotti, V (2008). "Flavonoids from carnation (Dianthus caryophyllus) and their antifungal activity". Phytochemistry Letters. Cilt1. ss.44-48. doi:10.1016/j.phytol.2007.10.001.
Ververidis F, Trantas E, Douglas C, Vollmer G, Kretzschmar G, Panopoulos N (Ekim 2007). "Biotechnology of flavonoids and other phenylpropanoid-derived natural products. Part I: Chemical diversity, impacts on plant biology and human health". Biotechnology Journal. 2 (10). ss.1214-34. doi:10.1002/biot.200700084. PMID17935117.
Isolation of a UDP-glucose: Flavonoid 5-O-glucosyltransferase gene and expression analysis of anthocyanin biosynthetic genes in herbaceous peony (Paeonia lactiflora Pall.). Da Qiu Zhao, Chen Xia Han, Jin Tao Ge and Jun Tao, Electronic Journal of Biotechnology, 15 November 2012, Volume 15, Number 6, DOI:10.2225/vol15-issue6-fulltext-7
Oomah, B. Dave; Mazza, Giuseppe (1996). "Flavonoids and Antioxidative Activities in Buckwheat". Journal of Agricultural and Food Chemistry. 44 (7). ss.1746-1750. doi:10.1021/jf9508357.
Ayoub M, de Camargo AC, Shahidi F (2016). "Antioxidants and bioactivities of free, esterified and insoluble-bound phenolics from berry seed meals". Food Chemistry. 197 (Part A). ss.221-232. doi:10.1016/j.foodchem.2015.10.107. PMID26616944.
Chukwumah Y, Walker LT, Verghese M (2009). "Peanut skin color: a biomarker for total polyphenolic content and antioxidative capacities of peanut cultivars". Int J Mol Sci. 10 (11). ss.4941-52. doi:10.3390/ijms10114941. PMC2808014$2. PMID20087468.
EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) (2010). "Scientific Opinion on the substantiation of health claims related to various food(s)/food constituent(s) and protection of cells from premature aging, antioxidant activity, antioxidant content and antioxidant properties, and protection of DNA, proteins and lipids from oxidative damage pursuant to Article 13(1) of Regulation (EC) No 1924/20061". EFSA Journal. 8 (2). s.1489. doi:10.2903/j.efsa.2010.1489.
Manner S, Skogman M, Goeres D, Vuorela P, Fallarero A (2013). "Systematic exploration of natural and synthetic flavonoids for the inhibition of Staphylococcus aureus biofilms". International Journal of Molecular Sciences. 14 (10). ss.19434-19451. doi:10.3390/ijms141019434. PMC3821565$2. PMID24071942.
de Sousa RR, Queiroz KC, Souza AC, Gurgueira SA, Augusto AC, Miranda MA, Peppelenbosch MP, Ferreira CV, Aoyama H (2007). "Phosphoprotein levels, MAPK activities and NFkappaB expression are affected by fisetin". J Enzyme Inhib Med Chem. 22 (4). ss.439-444. doi:10.1080/14756360601162063. PMID17847710.
Esselen M, Fritz J, Hutter M, Marko D (2009). "Delphinidin Modulates the DNA-Damaging Properties of Topoisomerase II Poisons". Chemical Research in Toxicology. 22 (3). ss.554-64. doi:10.1021/tx800293v. PMID19182879.
Bandele OJ, Clawson SJ, Osheroff N (2008). "Dietary polyphenols as topoisomerase II poisons: B-ring substituents determine the mechanism of enzyme-mediated DNA cleavage enhancement". Chemical Research in Toxicology. 21 (6). ss.1253-1260. doi:10.1021/tx8000785. PMC2737509$2. PMID18461976.
Izzi V, Masuelli L, Tresoldi I, Sacchetti P, Modesti A, Galvano F, Bei R (2012). "The effects of dietary flavonoids on the regulation of redox inflammatory networks". Frontiers in Bioscience. 17 (7). ss.2396-2418. doi:10.2741/4061. PMID22652788.
Gomes A, Couto D, Alves A, Dias I, Freitas M, Porto G, Duarte JA, Fernandes E (2012). "Trihydroxyflavones with antioxidant and anti-inflammatory efficacy". BioFactors. 38 (5). ss.378-386. doi:10.1002/biof.1033. PMID22806885.
Martinez-Micaelo N, González-Abuín N, Ardèvol A, Pinent M, Blay MT (2012). "Procyanidins and inflammation: Molecular targets and health implications". BioFactors. 38 (4). ss.257-265. doi:10.1002/biof.1019. PMID22505223.
Romagnolo DF, Selmin OI (2012). "Flavonoids and cancer prevention: a review of the evidence". J Nutr Gerontol Geriatr. 31 (3). ss.206-38. doi:10.1080/21551197.2012.702534. PMID22888839.
González CA, Sala N, Rokkas T (2013). "Gastric cancer: epidemiologic aspects". Helicobacter. 18 (Supplement 1). ss.34-38. doi:10.1111/hel.12082. PMID24011243.
van Dam RM, Naidoo N, Landberg R (2013). "Dietary flavonoids and the development of type 2 diabetes and cardiovascular diseases". Current Opinion in Lipidology. 24 (1). ss.25-33. doi:10.1097/MOL.0b013e32835bcdff. PMID23254472.
Siasos G, Tousoulis D, Tsigkou V, Kokkou E, Oikonomou E, Vavuranakis M, Basdra EK, Papavassiliou AG, Stefanadis C (2013). "Flavonoids in atherosclerosis: An overview of their mechanisms of action". Current Medicinal Chemistry. 20 (21). ss.2641-2660. doi:10.2174/0929867311320210003. PMID23627935.
Cappello, AR, Dolce V, Iacopetta D, Martello M, Fiorillo M, Curcio R, Muto L, Dhanyalayam D. (2015). "Bergamot (Citrus bergamia Risso) Flavonoids and Their Potential Benefits in Human Hyperlipidemia and Atherosclerosis: an Overview". Mini-Reviews in Medicinal Chemistry. 16 (8). ss.1-11. doi:10.2174/1389557515666150709110222. PMID26156545.
Choi O, Yahiro K, Morinaga N, Miyazaki M, Noda M (2007). "Inhibitory effects of various plant polyphenols on the toxicity of Staphylococcal alpha-toxin". Microbial Pathogenesis. 42 (5–6). ss.215-224. doi:10.1016/j.micpath.2007.01.007. PMID17391908.
Oh DR, Kim JR, Kim YR (2010). "Genistein inhibits Vibrio vulnificus adhesion and cytotoxicity to HeLa cells". Archives of Pharmacal Research. 33 (5). ss.787-792. doi:10.1007/s12272-010-0520-y. PMID20512479.
González-Segovia R, Quintanar JL, Salinas E, Ceballos-Salazar R, Aviles-Jiménez F, Torres-López J (2008). "Effect of the flavonoid quercetin on inflammation and lipid peroxidation induced by Helicobacter pylori in gastric mucosa of guinea pig". Journal of Gastroenterology. 43 (6). ss.441-447. doi:10.1007/s00535-008-2184-7. PMID18600388.
Hwang EI, Kaneko M, Ohnishi Y, Horinouchi S (Mayıs 2003). "Production of plant-specific flavanones by Escherichia coli containing an artificial gene cluster". Appl. Environ. Microbiol. 69 (5). ss.2699-706. doi:10.1128/AEM.69.5.2699-2706.2003. PMC154558$2. PMID12732539.
Trantas E, Panopoulos N, Ververidis F (2009). "Metabolic engineering of the complete pathway leading to heterologous biosynthesis of various flavonoids and stilbenoids in Saccharomyces cerevisiae". Metabolic Engineering. 11 (6). ss.355-366. doi:10.1016/j.ymben.2009.07.004. PMID19631278.
Ververidis F, Trantas E, Douglas C, Vollmer G, Kretzschmar G, Panopoulos N (2007). "Biotechnology of flavonoids and other phenylpropanoid-derived natural products. Part II: Reconstruction of multienzyme pathways in plants and microbes". Biotechnology Journal. 2 (10). ss.1235-49. doi:10.1002/biot.200700184. PMID17935118.
A new colourimetric assay for flavonoids in pilsner beers. Jan A. Delcour and Didier Janssens de Varebeke, Journal of the Institute of Brewing, January–February 1985, Volume 91, Issue 1, pages 37–40, DOI:10.1002/j.2050-0416.1985.tb04303.x
Lamaison, JL; Carnet, A (1991). "Teneurs en principaux flavonoides des fleurs de Cratageus monogyna Jacq et de Cratageus Laevigata (Poiret D.C) en Fonction de la vegetation". Plantes Medicinales Phytotherapie. Cilt25. ss.12-16.
Passicos E, Santarelli X, Coulon D (2004). "Regioselective acylation of flavonoids catalyzed by immobilized Candida antarctica lipase under reduced pressure". Biotechnol. Lett. 26 (13). ss.1073-1076. doi:10.1023/B:BILE.0000032967.23282.15. PMID15218382.