En İyi Sorular
Zaman Çizelgesi
Sohbet
Bakış Açıları

Yuvarlanma eğrisi

Diğer eğrilerin birlikte yuvarlanmasıyla oluşturulan matematiksel eğriler Vikipedi'den, özgür ansiklopediden

Remove ads

Eğrilerin diferansiyel geometrisinde, bir rulet veya yuvarlanma eğrisi (İngilizce: roulette), sikloidler, episikloidler, hiposikloidler, trokoidler, epitrokoidler, hipotrokoidler ve gereçleri (involütleri) genelleştiren bir eğri türüdür.

Remove ads

Tanım

Özetle
Bakış açısı

Gayriresmî tanım

Thumb
Yeşil bir parabol, sabit kalan eşit mavi bir parabol boyunca yuvarlanır. Üreteç, yuvarlanan parabolün tepe noktasıdır ve kırmızı ile gösterilen yuvarlanma eğrisini tanımlar. Bu durumda ortaya çıkan yuvarlanma eğrisi bir Diocles sisoididir.[1]

Kabaca ifade etmek gerekirse, yuvarlanma eğrisi, belirli bir eğriye bağlı bir nokta ("üreteç" veya "kutup" olarak adlandırılır) tarafından, bu eğri sabit olan ikinci bir eğri boyunca kaymadan yuvarlanırken tanımlanan eğridir. Daha açık bir ifadeyle, hareketli bir düzleme bağlı bir eğri verildiğinde, eğri aynı alanı işgal eden sabit bir düzleme bağlı belirli bir eğri boyunca kaymadan yuvarlanır, o zaman hareketli düzleme bağlı bir nokta, sabit düzlemde yuvarlanma eğrisi veya rulet adı verilen bir eğriyi tanımlar.

Özel durumlar ve ilgili kavramlar

Yuvarlanan eğrinin bir doğru ve üretecin doğru üzerinde bir nokta olduğu durumda, yuvarlanma eğrisi sabit eğrinin bir involütü olarak adlandırılır. Eğer yuvarlanan eğri bir çember ve sabit eğri bir doğru ise, o zaman yuvarlanma eğrisi bir trokoiddir. Eğer bu durumda, nokta çember üzerinde yer alıyorsa, yuvarlanma eğrisi bir sikloiddir.

İlgili bir kavram glissette, verilen bir eğriye bağlı bir noktanın verilen iki (veya daha fazla) eğri boyunca kayarken tanımladığı eğridir.

Resmi tanım

Biçimsel olarak, eğriler Öklid düzleminde diferansiyellenebilir eğriler olmalıdır. "Sabit eğri" değişmez tutulur; "yuvarlanan eğri" bir sürekli kongrüans dönüşümüne tabi tutulur, öyle ki her zaman eğriler, her iki eğri boyunca alındığında aynı hızla hareket eden bir temas noktasında teğet olurlar (bu kısıtlamayı ifade etmenin başka bir yolu da iki eğrinin temas noktasının kongrüans dönüşümünün anlık dönme merkezi olmasıdır). Ortaya çıkan yuvarlanma eğrisi, aynı uyum dönüşümleri kümesine tabi tutulan üretecin locusu tarafından oluşturulur.

Orijinal eğrileri karmaşık düzlemde eğriler olarak modelleyerek, , yuvarlanan () ve sabit () eğrilerinin iki doğal parametrizasyonları olsun, öyle ki , ve tüm için. üzerinde yuvarlandıkça üretecinin yuvarlanma eğrisi daha sonra aşağıdaki eşleme tarafından verilir:

Remove ads

Genellemeler

Yuvarlanan eğriye tek bir nokta yerine, verilen başka bir eğri hareketli düzlem boyunca taşınırsa, bir uyumlu eğriler ailesi üretilir. Bu ailenin zarfı yuvarlanma eğrisi veya rulet olarak da adlandırılabilir.

Daha yüksek uzaylarda yuvarlanma eğrileri kesinlikle hayal edilebilir ancak teğetlerden daha fazlasını hizalamak gerekir.

Örnek

Özetle
Bakış açısı

Eğer sabit eğri bir zincir eğrisi (İngilizce: catenary) ve yuvarlanan eğri (İngilizce: roulette) bir doğru ise, şu sonuca varırız:

Doğrunun parametrelendirilmesi şu şekilde seçilir:

Yukarıdaki formülü uygulayarak şunu elde ederiz:

Eğer p = -i ise ifadenin sabit bir hayali kısmı vardır (yani -i) ve rulet yatay bir çizgidir. Bunun ilginç bir uygulaması, bir kare tekerleğin zincir eğrisi yaylarının eşleştirilmiş bir serisi olan bir yolda zıplamadan yuvarlanabilmesidir.

Remove ads

Yuvarlanma eğrileri listesi

Daha fazla bilgi Sabit eğri, Hareketli eğri ...
Remove ads

Ayrıca bakınız

Notlar

Kaynakça

Loading content...

Konuyla ilgili okumalar

Loading content...
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads