Loading AI tools
จากวิกิพีเดีย สารานุกรมเสรี
ในทฤษฎีความซับซ้อนในการคำนวณ กลุ่มปัญหา เอ็นพี (NP: Non-deterministic Polynomial time) สามารถนิยามได้สองวิธี ซึ่งเราสามารถพิสูจน์ได้ไม่ยากนักว่านิยามทั้งสองแบบนี้สมมูลกัน
ลิงก์ข้ามภาษาในบทความนี้ มีไว้ให้ผู้อ่านและผู้ร่วมแก้ไขบทความศึกษาเพิ่มเติมโดยสะดวก เนื่องจากวิกิพีเดียภาษาไทยยังไม่มีบทความดังกล่าว กระนั้น ควรรีบสร้างเป็นบทความโดยเร็วที่สุด |
คำว่า "ตรวจคำตอบ" ในที่นี้มีความหมายค่อนข้างจะคลุมเครือ ซึ่งรายละเอียดในส่วนนี้จะถูกอธิบายในไม่ช้า
เอ็นพี เป็นคลาสของปัญหาที่ใหญ่มาก ประกอบด้วยปัญหาสำคัญมากมาย (รวมทั้งปัญหาทั้งหมดที่อยู่ในพีด้วย) ปัญหาบางอย่างในเอ็นพีค่อนข้างเป็นนามธรรมที่ดูเหมือนกับว่าจะไม่มีประโยชน์อะไรเลยในชีวิตจริง แต่ปัญหาส่วนใหญ่ที่ถูกนำมาใช้อย่างมากในงานอุตสาหกรรมและการคำนวณต่างๆ ก็เป็นปัญหาในกลุ่มเอ็นพีเช่นกัน ตัวอย่างเช่น ปัญหาการออกแบบเครือข่ายเพื่อให้ราคาถูกที่สุด ปัญหาการหาเส้นทางเดินครบรอบที่ประหยัดที่สุด ปัญหาการแบ่งและจัดลำดับการทำงานสำหรับคอมพิวเตอร์ ฯลฯ
นิยามแบบเป็นทางการของเอ็นพีมีสองแบบ
เราจะกล่าวว่าปัญหาการตัดสินใจ อยู่ภายในเอ็นพี เมื่อ เราสามารถหาเครื่องจักรทัวริงเชิงไม่กำหนด M ที่มีคุณสมบัติดังต่อไปนี้
ลองมาดูตัวอย่างกันสักสองสามตัวอย่าง
เริ่มจากปัญหาที่เข้าใจได้ง่าย พิจารณาปัญหา "จำนวน x เป็นจำนวนประกอบหรือไม่?" ปัญหานี้จะตอบว่า "ใช่" ถ้าจำนวนที่กำหนดให้เป็นจำนวนประกอบ สำหรับปัญหานี้เราสามารถออกแบบเครื่องจักรทัวริงเชิงไม่กำหนดให้ทำงานดังต่อไปนี้
M(x) เลือกจำนวน y ที่มีค่ามากกว่า 2 แต่น้อยกว่า x มา 1 จำนวน ถ้า y หาร x ลงตัว ตอบว่า "ใช่" ตอบว่า "ไม่ใช่"
พิจารณาการทำงานของเครื่องจักรทัวริงในสองกรณี กรณีแรก ถ้า x เป็นจำนวนประกอบ จะมีทางเป็นไปได้ว่าจำนวน y ที่ M เลือกจะหาร x ลงตัว กรณีที่สอง ถ้า x ไม่ใช่จำนวนประกอบ ไม่ว่า M จะเลือกจำนวนใดมาก็ตาม คำตอบที่ได้จะเป็น "ไม่ใช่" เสมอ จากการมีอยู่ของ M ดังกล่าว เราสามารถสรุปได้ว่าปัญหานี้อยู่ในเอ็นพี
ถัดมา พิจารณา ปัญหาความสอดคล้องแบบบูล เราสามารถออกแบบเครื่องจักรทัวริงเชิงไม่กำหนดดังต่อไปนี้ โดยเครื่องจักร M จะรับนิพจน์ มา แล้วตัดสินว่านิพจน์นี้สามารถแทนค่า เพื่อทำให้นิพจน์เป็นจริงได้หรือไม่
for i :=1 to n เลือกค่า จาก (true, false) แทนค่าที่เลือกทั้งหมดลงใน แล้วตอบว่า "ใช่" ถ้า เป็นจริง ถ้าไม่งั้นแล้วให้ตอบ "ไม่ใช่"
เราจะกล่าวว่าปัญหาการตัดสินใจ อยู่ภายในเอ็นพี เมื่อ เราสามารถหาเครื่องจักรทัวริงเชิงกำหนด V ที่มีคุณสมบัติดังต่อไปนี้ (V เป็นตัวแทนของ verifier)
หมายเหตุ: w มีชื่อเรียกหลายแบบ ที่นิยมเรียกกันก็คือ พยาน (witness) , บทพิสูจน์ (proof) , และ certificate
ลองมาดูตัวอย่างเดียวกันแต่ใช้นิยามของเอ็นพีแบบที่สองในการพิสูจน์ดูบ้าง เริ่มจากปัญหาจำนวนประกอบก่อน เราสามารถออกแบบ V ได้ดังนี้
V(x,w) ถ้า w หาร x ลงตัว ตอบว่า "ใช่" ตอบว่า "ไม่ใช่"
สังเกตว่าถ้า x เป็นจำนวนประกอบ จะมีบทพิสูจน์ w (ซึ่งในที่นี้ บทพิสูจน์ก็คือจำนวนที่หารจำนวนประกอบ x ลงตัว) ที่ทำให้ V ตอบว่า "ใช่" แต่ในทางกลับกันหาก x เป็นจำนวนเฉพาะ จะไม่มีบทพิสูจน์ใดที่ทำให้ V ตอบว่า "ใช่"
ลองมาดูตัวอย่างของ ปัญหาความสอดคล้องแบบบูล อีกครั้ง เราสามารถออกแบบ V ได้โดย
ถ้า w ไม่อยู่ในรูปแบบของ ตอบว่า "ไม่ใช่" แทนค่า แล้วตอบว่า "ใช่" ถ้า เป็นจริง ถ้าไม่งั้นแล้วให้ตอบ "ไม่ใช่"
จะเห็นว่าในปัญหานี้บทพิสูจน์ของเราก็คือค่าของตัวแปรที่ทำให้นิพจน์เป็นจริงนั่นเอง
เนื้อหาในส่วนนี้จะกล่าวถึงแนวคิดของบทพิสูจน์ว่าทำไมนิยามทั้งสองแบบนี้จึงสมมูลกันได้ การพิสูจน์แยกออกเป็นสองส่วนในส่วนแรกต้องพิสูจน์ว่าหากเซ็ต A ถูกจัดว่าเป็นเอ็นพีตามนิยามแบบแรกแล้ว A จะต้องเป็นเอ็นพีตามนิยามแบบที่สองด้วย และในส่วนที่สองเราต้องพิสูจน์ในกรณีกลับกัน
นิยามแบบแรก นิยามแบบที่สอง
สมมติว่าปัญหา A มีเครื่องจักรทัวริงเชิงไม่กำหนด M ที่ใช้เวลาการคำนวณเป็นฟังก์ชันพหุนามกับขนาดของอินพุต เราสามารถสร้างเครื่องจักรทัวริงเชิงกำหนด V ที่ simulate M โดยพิจารณาบทพิสูจน์ที่จะตรวจสอบคือบิตสตริงที่บ่งบอกถึงทางเลือกของ M และ V จะตอบ "ใช่" หากท้ายสุดแล้วสตริงที่บ่งบอกทางเลือกทำให้ M ทำงานจบในสถานะที่ตอบ "ใช่" เราลองมาวิเคราะห์การทำงานของ V กันดู
มีรายละเอียดปลีกย่อยที่ต้องจัดการอีกหน่อยคือ M อาจจะมีจำนวนทางเลือกมากกว่าสองในการเลือกแต่ละครั้ง ทำให้ไม่สามารถใช้บิตสตริงในการกำหนดทางเลือกได้ กรณีนี้สามารถแก้ได้ง่ายโดยการแปลง M ไปเป็น โดยที่ทุกครั้งที่ ใช้สมบัติการเลือกของเครื่องจักรทัวริงเชิงไม่กำหนด ทางเลือกของ จะมีเพียงสองเท่านั้น
นิยามแบบที่สอง นิยามแบบแรก
สมมติว่าปัญหา A เป็นเอ็นพีตามนิยามแบบที่สอง นั่นก็คือมีเครื่องจักรทัวริงเชิงกำหนด V ที่ทำหน้าที่ในการตรวจสอบตามนิยาม เราสามารถสร้างเครื่องจักรทัวริงเชิงไม่กำหนด M ที่รับอินพุต x ที่สอดคล้องกับนิยามแบบแรกโดยการให้ M ใช้ความสามารถของเครื่องจักรทัวริงเชิงไม่กำหนดในการเลือกบทพิสูจน์ w สำหรับ V หลังจากนั้น M simulate การทำงานของ V(x,w) และ M ตอบรับเมื่อ V(x,w) ให้คำตอบว่า "ใช่" เราสามารถวิเคราะห์เป็นสองกรณีได้ในวิธีเดียวกันกับบทพิสูจน์ในส่วนแรก
เนื่องจากว่าปัญหาที่อยู่ในกลุ่มนี้หลายอย่างมีประโยชน์เป็นอย่างมากในการแก้ปัญหาในชีวิตจริง นักวิจัยหลายคนจึงพยายามที่จะหาขั้นตอนวิธีที่มีประสิทธิภาพ (ทำงานในเวลาที่เป็นพหุนามกับขนาดของอินพุต) ในการแก้ปัญหาเหล่านี้ แต่ว่า จนกระทั่งปัจจุบัน ปํญหาหลายอย่างยังไม่สามารถหาขั้นตอนวิธีที่มีประสิทธิภาพได้
กลุ่มของปัญหาที่สำคัญเป็นอย่างมากในกลุ่มของเอ็นพีก็คือ เอ็นพีบริบูรณ์ ซึ่งมักจะถูกเรียกว่าเป็นกลุ่มของปํญหาที่ยากที่สุดในเอ็นพี เนื่องมาจากว่า การแก้ปัญหาเอ็นพีบริบูรณ์ได้อย่างมีประสิทธิภาพ ส่งผลให้เราสามารถแก้ปัญหาทั้งหมดในกลุ่มของเอ็นพีได้อย่างมีประสิทธิภาพด้วย ในปัจจุบัน หากปัญหาใดถูกจัดอยู่ในกลุ่ม เอ็นพีบริบูรณ์ นักวิจัยจะเลิกล้มความคิดที่จะหาคำตอบของปํญหานั้น (อย่างมีประสิทธิภาพ) ทันที โดยมักเปลี่ยนเป้าหมายไปที่การหาขั้นตอนวิธีแบบประมาณแทน
เราจะมาดูตัวอย่างของปัญหาปัญหาหนึ่งที่มีความก้าวหน้าอย่างสม่ำเสมอในเชิงของการหาอัลกอริธึมที่มีประสิทธิภาพสำหรับปัญหานั้น ปัญหานี้ก็คือปัญหา "จำนวนเฉพาะ (PRIME) " ซึ่งปัญหานี้ก็คือ
จะเห็นว่าการจัดปัญหานี้เข้าไปใน โค-เอ็นพี ค่อนข้างจะง่ายและชัดเจน แต่หลังจากนั้นนักวิจัยต้องใช้ความพยายามอย่างมากในการจัดปัญหานี้เข้าไปใน เอ็นพี อาร์พี และ พี ตามลำดับ
ลองมอง เอ็นพี ในรูปแบบของ ระบบการพิสูจน์เชิงโต้ตอบ (Interactive Proof System) ที่ประกอบด้วย คนพิสูจน์ (Prover) และคนตรวจสอบ (verifier) และมองว่าคนตรวจสอบต้องการที่จะตรวจสอบว่าตัวอย่างของปัญหาที่ให้มาเป็นตัวอย่างที่ตอบ "ใช่" ในนิยามแบบนี้ เอ็นพีก็คือระบบที่มีคนตรวจสอบที่มีคุณสมบัติดังต่อไปนี้
ลองนึกถึงความยากลำบากของคนตรวจสอบบทพิสูจน์ หากต้องอ่านบทพิสูจน์ทั้งหมดทุกครั้งคงเหนื่อยไม่น้อยเพราะบทพิสูจน์ในบางครั้งอาจจะยาวมากกว่า 100 หน้า แต่ก็จำเป็นที่จะต้องอ่านอย่างละเอียดเพราะว่าไม่ต้องการให้บทพิสูจน์ผิดๆผ่านการตรวจสอบไปได้ ในที่นี้ความคิดของ ระบบการพิสูจน์ที่สามารถตรวจสอบเชิงสุ่มได้ (Probabilistically Checkable Proof) จึงเกิดขึ้น ในระบบนี้คนตรวจสอบสามารถสุ่มตรวจสอบบทพิสูจน์เป็นบางจุดได้ และแน่นอนว่ามีความเป็นไปได้ว่า บทพิสูจน์ที่ผิดๆอาจจะผ่านตาไปได้เป็นบางครั้ง แต่จุดที่สำคัญอย่างหนึ่งคือบทพิสูจน์ที่ถูกต้องจะถูกยอมรับเสมอ
ผลงานที่ยิ่งใหญ่ที่สุดอย่างหนึ่งในวิทยาการคอมพิวเตอร์เชิงทฤษฎีก็คือ "นิยามแบบใหม่ของเอ็นพี" โดยใช้ระบบการพิสูจน์ที่สามารถตรวจสอบเชิงสุ่มได้ โดยที่นิยามแบบใหม่บอกไว้ว่า เอ็นพีก็คือระบบที่มีคนตรวจสอบที่มีคุณสมบัติดังนี้
และ คนตรวจสอบใช้การสุ่มไม่เกิน บิตและจำนวนครั้งในการอ่านบทพิสูจน์ไม่เกินค่าคงที่ค่าหนึ่ง
นิยามแบบนี้ของ เอ็นพี บอกเราว่าคนตรวจสอบสามารถสุ่มอ่านบทพิสูจน์เป็นจุดๆ (spot-check) ได้ ผลงานนี้มีประโยชน์มหาศาลในการนำไปพิสูจน์ความยากของปัญหาการประมาณ
ปัญหาที่สำคัญที่อยู่ในเอ็นพีก็คือ
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.