อากาศพลศาสตร์

จากวิกิพีเดีย สารานุกรมเสรี

อากาศพลศาสตร์

อากาศพลศาสตร์ (อังกฤษ: Aerodynamics) มาจากภาษากรีก ἀήρ Aer (อากาศ) + δυναμική (itself from-ตัวของมันเองมาจาก) δύναμις dynamis (force ; specially, miraculous power), (แรง ; เป็นพิเศษ, มีอำนาจน่าอัศจรรย์), เป็นสาขาของวิชาพลศาสตร์ที่เกี่ยวข้องกับการศึกษาการเคลื่อนที่ของอากาศ, โดยเฉพาะอย่างยิ่งเมื่อมันมีปฏิสัมพันธ์กับวัตถุที่เป็นของแข็ง อากาศพลศาสตร์เป็นหน่วยย่อยของพลศาสตร์ของไหลและพลศาสตร์ก๊าซ, ด้วยทฤษฎีที่ใช้ร่วมกันอย่างมากมายระหว่างกัน อากาศพลศาสตร์มักจะใช้คำที่มีความหมายเหมือนกันกับพลศาสตร์ก๊าซด้วยความแตกต่างที่ว่าพลศาสตร์ก๊าซสามารถนำไปประยุกต์ใช้ได้กับก๊าซทั้งหมด, ไม่จำกัดเฉพาะกับอากาศ[1]

Thumb
วังวนถูกสร้างขึ้นโดยแนวทางผ่านของปีกเครื่องบินเผยให้เห็นควันม้วนตัวอยู่ กระแสลมวน เป็นส่วนหนึ่งของปรากฏการณ์มากมายที่เกี่ยวข้องกับการศึกษาของอากาศพลศาสตร์ กระแสลมวนถูกสร้างขึ้นโดยความแตกต่างของความดันระหว่างพื้นผิวด้านบนและด้านล่างของปีก อากาศจะไหลจากบริเวณความดันสูงด้านล่างของปีกไปสู่บริเวณความดันที่ต่ำกว่าที่อยู่ด้านบนพื้นผิวของปีก

การศึกษาอากาศพลศาสตร์อย่างเป็นทางการในแนวทางแห่งยุคสมัยใหม่เริ่มต้นขึ้นในศตวรรษที่สิบแปด แม้ว่าการสังเกตแนวคิดพื้นฐานเช่นการฉุดลากทางอากาศพลศาสตร์ (aerodynamic drag) จะได้รับการจดบันทึกกันมากมาก่อนหน้านี้ ในที่สุดของความพยายามในช่วงยุคต้น ๆ ของงานที่เกี่ยวข้องกับทางด้านอากาศพลศาสตร์ทำให้สามารถบรรลุผลของการบินของอากาศยานที่หนักกว่าอากาศซึ่งได้รับการแสดงให้เห็นเป็นครั้งแรกโดยวิลเบอร์และออร์วิลไรท์ (Wilbur and Orville Wright) ในปี 1903 ตั้งแต่นั้นมาการใช้อากาศพลศาสตร์ผ่านการวิเคราะห์ทางคณิตศาสตร์, การประมาณค่าจากการสังเกตทางการทดลอง, การทดลองในอุโมงค์ลม, และการจำลองสถานการณ์ด้วยคอมพิวเตอร์ได้กลายมาเป็นพื้นฐานทางวิทยาศาสตร์สำหรับการพัฒนาอย่างต่อเนื่องในการศึกษาทางด้านการบินของอากาศยานที่หนักกว่าอากาศและจำนวนของเทคโนโลยีอื่น ๆ งานล่าสุดเมื่อไม่นานมานี้ในวิชาอากาศพลศาสตร์ได้มุ่งเน้นในประเด็นที่เกี่ยวข้องกับการไหลแบบอัดตัว (compressible flow), ความปั่นป่วน (turbulence) และชั้นขอบเขต (boundary layers) และได้กลายมาเป็นเชิงทางด้านการคำนวณ (computational) เกี่ยวข้องกับธรรมชาติมากขึ้นเรื่อย ๆ

ภาพรวม

การทำความเข้าใจเกี่ยวกับการเคลื่อนที่ของอากาศ (มักเรียกว่าสนามการไหล) รอบวัตถุช่วยในการคำนวณเกี่ยวกับแรงและช่วงเวลาที่กระทำต่อวัตถุ คุณสมบัติโดยทั่วไปในการคำนวณสำหรับสนามการไหลประกอบด้วยความเร็ว, ความดัน, ความหนาแน่น และ อุณหภูมิ เป็นฟังก์ชันของตำแหน่งเชิงพื้นที่และเวลา

ประวัติ

สรุป
มุมมอง

วิชาอากาศพลศาสตร์สมัยใหม่ไม่ได้แต่เพียงแค่ย้อนเวลากลับไปในช่วงประมาณศตวรรษที่สิบเจ็ดเท่านั้น แต่แรงทางอากาศพลศาสตร์นั้นได้ถูกควบคุมโดยมนุษย์มานับเป็นเวลาพัน ๆ ปี โดยใช้ในเรือใบและกังหันลม[2] และภาพและเรื่องราวได้ปรากฏมีบันทึกอยู่มาโดยตลอดในประวัติศาสตร์ของการบิน[3] เช่นตำนานของอิคะเริส (Icarus) และ เดดะเลิส (Daedalus) แห่งยุคกรีกโบราณ (Ancient Greek)[4] แนวคิดพื้นฐานของความต่อเนื่อง (continuum), แรงต้าน (drag), และเกรเดียนท์ของความดัน (pressure gradient),มีปรากฏอยู่ในงานของอาริสโตเติลและอาร์คิมิดิส[5]

ในปี ค.ศ. 1726, เซอร์ ไอแซก นิวตัน (Sir Isaac Newton) กลายเป็นบุคคลคนแรกในการพัฒนาทฤษฎีของแรงต้านของอากาศ (air resistance)[6] ทำให้เขาเป็นนักอากาศพลศาสตร์ (aerodynamicists) คนแรกในประวัติศาสตร์ ต่อมาในปี ค.ศ. 1738 นักคณิตศาสตร์ชาว ดัตช์-สวิส ชื่อ แดเนียล แบร์นูลลี (Daniel Bernoulli) กับคัมภีร์ที่มีชื่อว่า Hydrodynamica, ที่เขาได้อธิบายถึงความสัมพันธ์ขั้นพื้นฐานระหว่างความดัน, ความหนาแน่น, และ ความเร็วของการไหล สำหรับการไหลแบบไม่อัดตัว (incompressible flow) [7] ได้กลายเป็นที่รู้จักกันของผู้คนในทุกวันนี้ว่าเป็น หลักของแบร์นูลลี (Bernoulli's principle) [8] ซึ่งเป็นวิธีการในการคำนวณวิธีหนึ่งสำหรับการคำนวณทางด้านอากาศพลศาสตร์ของแรงยก (aerodynamic lift)[9] ในปี ค.ศ. 1757 เลออนฮาร์ด ออยเลอร์ได้ตีพิมพ์สมการออยเลอร์แบบที่ทั่วไปมากขึ้นซึ่งอาจจะนำไปใช้ได้กับทั้งการไหลของของไหลแบบที่บีบอัดตัวได้และการไหลแบบที่บีบอัดตัวไม่ได้ สมการออยเลอร์ได้ถูกขยายไปสู่การรวมผลกระทบของความหนืดเข้าไว้ด้วยในช่วงครึ่งแรกของปี 1800, ส่งผลให้เกิดเป็นสมการนาเวียร์-สโตกส์ (Navier-Stokes equations)[10][11] สมการนาเวียร์-สโตกส์ เป็นสมการที่ใช้กันทั่วไปในการไหลของของไหล แต่เป็นเรื่องยากที่จะแก้ปัญหาสำหรับการไหลแบบไหลเวียนรอบ ๆ แต่เป็นรูปทรงที่เรียบง่ายที่สุด

Thumb
อุโมงค์ลมจำลองของพี่น้องไรต์ ได้ถูกจัดแสดงอยู่ที่ศูนย์การบินและอวกาศเวอร์จิเนีย อุโมงค์ลมมีบทบาทสำคัญในการพัฒนาและการรับรองความถูกต้องของกฎทางอากาศพลศาสตร์ (A replica of the Wright brothers' wind tunnel is on display at the Virginia Air and Space Center. Wind tunnels were key in the development and validation of the laws of aerodynamics.)

ในปี ค.ศ. 1799, เซอร์ จอร์จ เคย์ลีย์ (George Cayley) กลายเป็นบุคคลแรกที่ระบุแรงทางอากาศพลศาสตร์ทั้งสี่ของการบิน (น้ำหนัก, แรงยกทางอากาศพลศาสตร์, แรงต้าน (drag), และแรงผลัก (thrust)) ตลอดจนความสัมพันธ์ระหว่างแรงเหล่านั้น,[12][13] และในการทำเช่นนั้นได้สรุปเส้นทางสู่ความสำเร็จในการบินที่หนักกว่าอากาศในศตวรรษต่อมา ในปี ค.ศ.1871 ฟรานซิส เฮอร์เบิร์ต เวนแฮม (Francis Herbert Wenham) ได้สร้างอุโมงค์ลมขึ้นเป็นครั้งแรก ซึ่งช่วยให้สามารถตรวจวัดแรงตามหลักอากาศพลศาสตร์ได้อย่างแม่นยำ ทฤษฎีแรงต้าน (Drag theory) ได้รับการพัฒนาโดย ฌ็อง เลอ รง ดาล็องแบร์ (Jean le Rond d'Alembert),[14] กุสทัฟ เคียร์ชฮ็อฟ (Gustav Kirchhoff),[15] และ ลอร์ด เรย์ลี่ (Lord Rayleigh),[16] ในปี ค.ศ.1889 ชาร์ล รีนาร์ด (Charles Renard) วิศวกรการบินชาวฝรั่งเศส กลายเป็นบุคคนแรกที่สามารถคาดการณ์ถึงพลังงานที่จำเป็นสำหรับการบินอย่างต่อเนื่องได้อย่างสมเหตุสมผล [17] อ็อตโท ลิเลียนไทล์ (คำอ่านเป็นภาษาเยอรมัน) (Otto Lilienthal) คือบุคคลแรกที่ประสบความสำเร็จอย่างสูงในการบินด้วยเครื่องร่อน และยังเป็นคนแรกที่นำเสนอปีก หรือ แพนอากาศ (airfoil) ที่มีลักษณะโค้งบางที่สามารถยกตัวเครื่องร่อนให้สูงขึ้นและมีแรงต้านอากาศที่ต่ำอีกด้วย โดยอาศัยการพัฒนาดังกล่าว รวมถึงการวิจัยที่ดำเนินการในอุโมงค์ลมของตนเอง พี่น้องไรต์ (Wright brothers) จึงได้ทำการบินด้วยเครื่องบินที่มีกำลังขับเคลื่อนด้วยตัวมันเองลำแรกของโลกได้สำเร็จ เมื่อวันที่ 17 ธันวาคม ค.ศ.1903

ดูเพิ่ม

อ้างอิง

อ่านเพิ่ม

แหล่งข้อมูลอื่น

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.