Loading AI tools
จากวิกิพีเดีย สารานุกรมเสรี
ในสถิติศาสตร์ ตัวแปรกวน[1] (อังกฤษ: confounding variable) ปัจจัยกวน[2] (อังกฤษ: confounding factor) หรือ ตัวกวน[3] (อังกฤษ: confounder) เป็นตัวแปรนอก (extraneous variable) ในแบบจำลองทางสถิติที่มีสหสัมพันธ์โดยตรงหรือโดยผกผัน กับทั้งตัวแปรตาม (dependent variable) และตัวแปรอิสระ (independent variable)
ความสัมพันธ์ปลอม (spurious relationship) เป็นความสัมพันธ์ระหว่างตัวแปรอิสระกับตัวแปรตาม ที่ประเมินอย่างผิดพลาด เพราะไม่ได้คำนึงถึงปัจจัยกวน เป็นการประเมินที่ประกอบด้วย omitted-variable bias (ความเอนเอียงโดยละเว้นตัวแปร)
แม้ว่านิยามโดยเฉพาะอาจจะต่าง ๆ กัน แต่โดยสาระแล้ว ตัวแปรกวนจะมีองค์ประกอบ 4 อย่าง ตัวอย่างที่ให้ดังต่อไปนี้มีตัวแปร 3 ตัวคือ "V" เป็นตัวแปรที่เป็นประเด็นการศึกษา "C" เป็นตัวแปรกวน และ "O" เป็นตัวแปรที่เป็นผลที่เป็นประเด็นการศึกษา
แต่นิยามโดยสหสัมพันธ์เช่นที่พึ่งกล่าวมายังไม่สมบูรณ์ นักวิเคราะห์จำนวนเพิ่มขึ้นเรื่อย ๆ มีมติร่วมกันว่า ตัวแปรกวนเป็นเรื่องเกี่ยวกับเหตุและผล ดังนั้น จึงไม่สามารถกำหนดได้ด้วยแนวคิดทางความสัมพันธ์หรือสหสัมพันธ์[4][5][6]
ปัจจัยกวนต้องนิยามและจัดการ โดยเป็นแบบจำลองที่สร้างข้อมูล ดังที่เห็นจากรูปข้างบน โดยเฉพาะก็คือ สมมุติว่า X เป็นตัวแปรอิสระและ Y เป็นตัวแปรตาม เพื่อที่จะประเมินผลที่ X มีต่อ Y เราต้องระงับผลของตัวแปรนอกที่จะมีต่อทั้ง X และ Y ดังนั้น เราจึงอาจกล่าวว่า ตัวแปร Z เป็นตัวกวนของ X และ Y ถ้า Z เป็นเหตุของทั้ง X และ Y
โดยอธิบายเป็นเหตุและผลเช่นนี้ เรากำหนด ว่าเป็นความน่าจะเป็นของเหตุการณ์ Y เมื่อมีการกระทำ X แต่ X และ Y จะไม่มีตัวแปรกวนก็ต่อเมื่อ
|
(1) |
สำหรับค่าทุกค่าของ X คือ x และ Y คือ y โดยที่ เป็นค่าความน่าจะเป็นมีเงื่อนไขเมื่อ X = x ดังที่ปรากฏในสมการนี้ เรารู้ได้ว่า X และ Y จะไม่มีตัวแปรกวนก็ต่อเมื่อค่าความสัมพันธ์ระหว่าง X และ Y ที่เห็นได้ตรวจสอบได้ จะเท่ากับที่วัดได้ในการทดลองมีกลุ่มควบคุม โดยสุ่มค่า x
ดังนั้น โดยหลักแล้ว แบบจำลองเยี่ยงนี้สามารถตรวจสอบได้ถ้าเรามีสูตรทุกสูตร และค่าความน่าจะเป็นทุกค่า ที่เกี่ยวข้องกับแบบจำลอง เช่นตรวจสอบโดยใช้ค่า x แต่ละค่าสำหรับ X แล้วเช็คว่า ความน่าจะเป็นของ Y เท่ากับความน่าจะเป็นมีเงื่อนไข P (y|x) หรือไม่ และถ้า P (y|do (x)) = P (y|x) สำหรับทุกค่าของ x ก็จะชัดเจนว่า X และ Y ไม่มีตัวแปรกวน
ส่วนนี้รอเพิ่มเติมข้อมูล คุณสามารถช่วยเพิ่มข้อมูลส่วนนี้ได้ |
ส่วนนี้รอเพิ่มเติมข้อมูล คุณสามารถช่วยเพิ่มข้อมูลส่วนนี้ได้ |
ในการประเมินความสำคัญและธรรมชาติของความเสี่ยงต่อสุขภาพมนุษย์ เราจำเป็นที่จะควบคุมตัวแปรกวน เพื่อแสดงผลที่เกิดจากสารอันตราย เช่น สารเติมแต่งอาหาร สารฆ่าศัตรูพืชและสัตว์ หรือยาใหม่ ได้อย่างถูกต้อง แต่ในงานศึกษาตามแผน เป็นเรื่องยากที่จะหาและคัดเลือกอาสาสมัครที่มีตัวแปรต่าง ๆ คือพื้นเพประวัติ เหมือนกัน (เช่นอายุ การทานอาหาร การศึกษา เขตที่อยู่ เป็นต้น) และแม้ในงานงานศึกษาย้อนหลังก็มีปัญหาเช่นเดียวกัน และเพราะไม่สามารถควบคุมตัวแปรต่าง ๆ ในงานศึกษาในมนุษย์ ปัญหาตัวแปรกวนจึงเป็นเรื่องที่ท้าทาย ดังนั้น งานศึกษาแบบทดลอง อาจจะใช้ได้เพื่อหลีกเลี่ยงปัญหาเช่นนี้
ในการศึกษาบางสาขา ตัวแปรกวนอาจจะจัดเป็นหลายประเภท เช่นในวิทยาการระบาด ประเภทหนึ่งก็คือ "confounding by indication (การกวนโดยตัวบ่งชี้)"[7] ซึ่งเป็นเป็นตัวกวนในงานศึกษาแบบสังเกต เพราะว่าปัจจัยช่วยพยากรณ์โรค (prognostic factor) อาจจะมีผลทั้งต่อการตัดสินใจการรักษาและผลที่เป็นประเด็นการศึกษา (และดังนั้น จะทำให้การประเมินผลการรักษามีความเอนเอียง) การควบคุมปัจจัยช่วยพยากรณ์โรคอาจจะช่วยลดปัญหานี้ แต่ก็จะยังมีโอกาสที่จะมีปัจจัยที่ไม่ได้คิดถึงหรือไม่รู้จัก หรือที่ปัจจัยต่าง ๆ จะสัมพันธ์กันอย่างซับซ้อน ตัวกวนประเภทนี้อาจเป็นข้อจำกัดที่สำคัญที่สุดของงานศึกษาแบบสังเกต แต่งานศึกษาแบบสุ่ม จะไม่มีตัวกวนประเภทนี้เพราะสุ่มผู้ร่วมการทดลองเข้ากลุ่มต่าง ๆ
ตัวแปรกวนอาจจะแยกประเภทได้โดยแหล่งกำเนิด เช่น ที่เกิดโดยวิธีวัด (operational confound) โดยวิธีดำเนินการ (procedural confound) และโดยความแตกต่างระหว่างกลุ่มบุคคล (person confound)
ตัวอย่างหนึ่งเช่น สมมุติว่า การบริโภคไอศกรีมมีความสัมพันธ์ทางสถิติกับจำนวนผู้จมน้ำตายในช่วงเวลาหนึ่ง ๆ คือตัวแปรสองตัวนี้มีสหสัมพันธ์เชิงบวกต่อกันและกัน ผู้ประเมินเหตุการณ์ อาจจะอธิบายค่าสหสัมพันธ์โดยอนุมานความเป็นเหตุผลของตัวแปรสองตัวว่า ไอศกรีมทำให้จมน้ำตาย หรือเหตุการณ์จมน้ำตายทำให้มีการบริโภคไอศกรีม แต่ว่า คำอธิบายที่เป็นไปได้มากกว่าก็คือ ความสัมพันธ์ระหว่างการบริโภคไอศกรีมกับการจมน้ำตายเป็นเรื่องเทียม แต่มีตัวแปรที่สามซึ่งเป็นตัวแปรกวน (เช่นฤดู) ที่มีอิทธิพลต่อตัวแปรสองตัวแรก คือ ในช่วงฤดูร้อน อุณหภูมิที่สูงเพิ่มการบริโภคไอศกรีม และก็เพิ่มจำนวนคนที่ไปเล่นน้ำแล้วจมน้ำตายด้วย
อีกตัวอย่างหนึ่งเช่น ถ้าเราศึกษาความสัมพันธ์ระหว่างลำดับการคลอด (ความเป็นลูกคนที่เท่าไร) และการมีกลุ่มอาการดาวน์ ในกรณีนี้ อายุของคุณแม่จะเป็นตัวแปรกวน คือพบว่า
ในการประเมินความเสี่ยง ปัจจัยเช่น อายุ เพศ ระดับการศึกษา บ่อยครั้งมีผลต่อสุขภาพ ดังนั้น จึงต้องควบคุมปัจจัยเหล่านั้น แต่ว่า นักวิจัยอาจจะไม่ได้พิจารณาหรือไม่มีข้อมูลเกี่ยวกับปัจจัยอื่น ๆ อีกที่เป็นเหตุ ตัวอย่างอย่างหนึ่งก็คือการศึกษาผลของการสูบบุหรี่ต่อสุขภาพ การสูบบุหรี่ การดื่มสุรา และการเลือกทานอาหาร ล้วนแต่เป็นกิจกรรมชีวิตที่เกี่ยวเนื่องกัน ดังนั้น การประเมินความเสี่ยงของการสูบบุหรี่ ที่ไม่ได้ควบคุมการดื่มสุราหรือการเลือกทานอาหาร อาจจะทำให้ประเมินความเสี่ยงการสูบบุหรี่สูงเกินจริง[10] มีการประเมินความเสี่ยงของการสูบบุหรี่พร้อมกับตัวกวนในอาชีพต่าง ๆ เช่น พนักงานในเหมืองถ่านหิน[11] แต่ว่า ถ้าจำนวนตัวอย่างของผู้ไม่สูบบุหรี่หรือผู้ไม่ดื่มสุราน้อยเกินไปในอาชีพนั้น ๆ ค่าประเมินความเสี่ยงอาจจะมีความเอนเอียงว่า การสูบบุหรี่ไม่มีผลเสียต่อสุขภาพในอาชีพนั้น ๆ
การลดโอกาสการเกิดและผลของปัจจัยกวน สามารถทำได้โดยเพิ่มประเภทและจำนวนการเปรียบเทียบในการวิเคราะห์[ต้องการอ้างอิง] แต่ว่า ถ้ามีตัวกวนโดยวิธีวัด (operational confound) หรือโดยวิธีดำเนินการ (procedural confound) การวิเคราะห์เปรียบเทียบกลุ่มย่อย ๆ อาจจะไม่สามารถแสดงให้ปรากฏได้ว่า มีตัวกวน นอกจากนั้นแล้ว การเพิ่มจำนวนการเปรียบเทียบเป็นกลุ่มย่อย ๆ สามารถเพิ่มปัญหาอย่างอื่น ๆ เช่น multiple comparisons
นอกจากนั้นแล้ว การทบทวนโดยผู้เชี่ยวชาญในระดับเดียวกัน (Peer review) ยังสามารถช่วยลดตัวกวน ไม่ว่าจะทบทวนก่อนเริ่มดำเนินการศึกษา หรือหลังจากที่ทำการวิเคราะห์แล้ว เพราะว่า การทบทวนเช่นนี้อาศัยความชำนาญงานร่วมกันในสาขาวิชาการ เพื่อกำหนดจุดอ่อนของการออกแบบและการวิเคราะห์งานศึกษา รวมทั้งกลไกที่ผลงานศึกษาอาจมีผลจากตัวกวน และโดยนัยเดียวกัน การทำซ้ำ (replication) สามารถตรวจสอบความทนทานของผลจากงานศึกษาหนึ่ง ไปยังอีกงานศึกษาหนึ่งที่มีเงื่อนไขและการวิเคราห์ต่าง ๆ กัน (เช่น สามารถควบคุมตัวกวนที่ไม่รู้ หรือไม่ได้คุมในการศึกษาเบื้องต้น)
ปรากฏการณ์ตัวกวนมีโอกาสน้อยกว่าที่จะเกิดและมีผลเหมือน ๆ กัน ในงานศึกษาที่ทำต่างเวลาและต่างสถานที่[ต้องการอ้างอิง] ในการเลือกสถานที่เพื่อทำการศึกษา อาจจะต้องบันทึกสิ่งแวดล้อมโดยรายละเอียด เพื่อให้มั่นใจได้ว่า สถานที่มีสิ่งแวดล้อมคล้ายคลึงกัน และดังนั้น มีโอกาสน้อยที่จะมีตัวแปรกวน และท้ายสุดในเรื่องนี้ ความสัมพันธ์ระหว่างตัวแปรทางสิ่งแวดล้อมที่อาจะเป็นตัวกวนการวิเคราะห์ กับค่าที่วัด สามารถนำมาศึกษาให้ละเอียด เพราะว่า ข้อมูลที่ได้สามารถนำมาใช้ในแบบจำลองเฉพาะสถานที่ เพื่อกำหนดความแตกต่างที่แบบจำลองทั่วไปอธิบายไม่ได้ ซึ่งอาจจะเป็นความแตกต่างที่เป็นผลจริง ๆ[12]
ขึ้นอยู่กับแบบการศึกษาที่ใช้ มีวิธีหลายอย่างที่สามารถปรับวิธีการศึกษา เพื่อละเว้นหรือควบคุมตัวแปรกวน คือ[13]
แต่ว่า วิธีที่กล่าวมาทั้งหมดนี้มีจุดอ่อน
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.