Remove ads
From Wikipedia, the free encyclopedia
పదార్థానికి ఉన్న నాలుగు ప్రాథమిక స్థితులలో ఘనం ఒకటి. మిగిలినవి ద్రవ, వాయు, ప్లాస్మా స్థితులు. ఘనపదార్థంలోని అణువులు ఒకదానికొకటి దగ్గరగా వత్తుకుని ఉండి, తక్కువ గతిశక్తిని కలిగి ఉంటాయి. నిర్మాణాత్మక దృఢత్వం, ఉపరితలంపై పనిచేసే బలాన్ని ప్రతిఘటించడం ఘనపదార్థ లక్షణాలు. ద్రవం వలె కాకుండా, ఒక ఘన వస్తువు అది ఉన్న పాత్ర ఆకారాన్ని పొందదు, లేదా వాయువు వలె అందుబాటులో ఉన్న మొత్తం ఘనపరిమాణాన్ని పూరించేలా విస్తరించదు. ఘనపదార్థంలోని పరమాణువులు ఒకదానికొకటి కట్టుబడి సాధారణ రేఖాగణిత లాటిస్ లాగా (స్ఫటికాకార ఘనపదార్థాలు, ఇందులో లోహాలు, సాధారణ మంచు ఉంటాయి) లేదా అవక్రమంగా (కిటికీ గ్లాసు వంటి నిరాకార ఘనపదార్థం) ఉంటాయి. ఘనపదార్థాలు తక్కువ పీడనం వద్ద సంకోచం చెందవు. వాయువుల లోని అణువులు విరళంగా ఉంటాయి కాబట్టి వాయువులను తక్కువ పీడనంతోనే కుదించవచ్చు.
ఘనపదార్థాలతో వ్యవహరించే భౌతిక శాస్త్ర శాఖను ఘన-స్థితి భౌతిక శాస్త్రం (సాలిడ్ స్టేట్ ఫిజిక్స్) అని పిలుస్తారు. ఇది ఘనీభవించిన పదార్థ భౌతికశాస్త్రం (కండెన్స్డ్ మ్యాటర్ ఫిజిక్స్ దీనిలో ద్రవాలు కూడా ఉంటాయి) లోని ప్రధాన శాఖ. మెటీరియల్ సైన్స్ ప్రధానంగా ఘనపదార్థాల భౌతిక, రసాయన లక్షణాలకు సంబంధించినది. సాలిడ్-స్టేట్ కెమిస్ట్రీ ప్రత్యేకించి కొత్త పదార్థాల సంశ్లేషణకు, అలాగే కొత్త పదార్థాల గుర్తింపుకూ రసాయన కూర్పుకూ సంబంధించిన శాస్త్రం.
ఘనపదార్థంలోని పరమాణువుల మధ్య ఉండే బలాలు వివిధ రూపాల్లో ఉంటాయి. ఉదాహరణకు, సోడియం క్లోరైడ్ (సాధారణ ఉప్పు) స్ఫటికం అయానిక్ సోడియం, క్లోరిన్లతో రూపొందిందింది. ఈ రెండూ అయానిక్ బంధాల ద్వారా కలిసి ఉంటాయి. [1] డైమండ్ [2] లేదా సిలికాన్లో, పరమాణువులు ఎలక్ట్రాన్లను పంచుకుని, సమయోజనీయ బంధాలను ఏర్పరుస్తాయి. [3] లోహాలలో, లోహ బంధంలో ఎలక్ట్రాన్లను పంచుకుంటాయి. [4] కర్బన సమ్మేళనాల వంటి కొన్ని ఘనపదార్థాలు, ప్రతి అణువుపై ఎలక్ట్రానిక్ చార్జ్ క్లౌడ్ యొక్క ధ్రువణత ఫలితంగా వాన్ డెర్ వాల్స్ శక్తుల వలన కలిసి ఉంటాయి. ఘనాల రకాల మధ్య ఉండే వ్యత్యాసాలు వాటి బంధాల మధ్య ఉండే వ్యత్యాసాల వలన ఏర్పడతాయి.
లోహాలు సాధారణంగా దృఢంగాను, సాంద్రంగానూ ఉండి విద్యుత్తుకు, వేడికీ రెండింటికీ చక్కటి వాహకాలుగా ఉంటాయి. [5] [6] ఆవర్తన పట్టికలో బోరాన్ నుండి పోలోనియం వరకు గీసిన వికర్ణ రేఖకు ఎడమ వైపున ఉన్న మూలకాలలో ఎక్కువ భాగం లోహాలు. రెండు లేదా అంతకంటే ఎక్కువ మూలకాల మిశ్రమాలలో, ప్రధాన మూలకం లోహమైతే వాటిని మిశ్రమ లోహాలు అంటారు.
లోహాలు మంచి విద్యుద్వాహకాలు కాబట్టి, వాటిని విద్యుత్ ఉపకరణాలలోను, తక్కువ శక్తి నష్టం కలుగుతుంది కాబట్టి ఎక్కువ దూరాలకు విద్యుత్తును తీసుకెళ్లేందుకు విలువైన పదార్థాలు. అందువలన, ఎలక్ట్రికల్ పవర్ గ్రిడ్లలో విద్యుత్తును పంపిణీ చేయడానికి లోహపు తీగలనే వాడతారు. రాగి మంచి వాహకం కాబట్టి, గృహ విద్యుత్ వ్యవస్థల్లో దాన్ని వాడతారు. చాలా లోహాలకు ఉండే అధిక ఉష్ణ వాహకత కారణంగా వాటిని వంట పాత్రలకు ఉపయోగిస్తారు.
సాలిడ్-స్టేట్ కెమిస్ట్రీ, ఫిజిక్స్, మెటీరియల్స్ సైన్స్, ఇంజనీరింగ్ రంగాలలో లోహ మూలకాలు, వాటి మిశ్రమ లోహాల అధ్యయనం గణనీయంగా ఉంటుంది.
ఖనిజాలు సహజంగా సంభవించే, అధిక పీడనం కింద వివిధ భౌగోళిక ప్రక్రియల ద్వారా ఏర్పడే ఘనపదార్థాలు. [7] నిజమైన ఖనిజంగా వర్గీకరించబడాలంటే, ఒక పదార్ధం అంతటా ఏకరీతి భౌతిక లక్షణాలతో ఉండే క్రిస్టల్ నిర్మాణాన్ని కలిగి ఉండాలి. ఖనిజాలు స్వచ్ఛమైన మూలకాలు, సాధారణ లవణాల నుండి చాలా క్లిష్టమైన సిలికేట్ల వరకు వేల సంఖ్యలో తెలిసిన రూపాలతో ఉంటాయి. దీనికి విరుద్ధంగా, రాక్ శాంపిల్ అనేది ఖనిజాలు లేదా మినరలాయిడ్స్ యొక్క యాదృచ్ఛిక మొత్తం. దీనికి నిర్దిష్ట రసాయన కూర్పు ఉండదు. భూమి పైపెంకు లోని రాళ్లలో ఎక్కువ భాగం క్వార్ట్జ్ (స్ఫటికాకార SiO 2 ), ఫెల్డ్స్పార్, మైకా, క్లోరైట్, కయోలిన్, కాల్సైట్, ఎపిడోట్, ఆలివిన్, అగైట్, హార్న్బ్లెండే, మాగ్నెటైట్, హెమటైట్, లిమోనైట్ వంటి కొన్ని ఖనిజాలు ఉంటాయి. క్వార్ట్జ్, మైకా లేదా ఫెల్డ్స్పార్ వంటి కొన్ని ఖనిజాలు సాధారణం గాను, మరికొన్ని ప్రపంచవ్యాప్తంగా కొన్ని ప్రదేశాలలో మాత్రమేను లభిస్తాయి. ఇప్పటివరకు ఉన్న ఖనిజాల యొక్క అతిపెద్ద సమూహం సిలికేట్లు (చాలా శిలలు 95% కంటే ఎక్కువ సిలికేట్లే). ఇవి ఎక్కువగా సిలికాన్, ఆక్సిజన్లతో కూడి, అల్యూమినియం, మెగ్నీషియం, ఇనుము, కాల్షియం వంటి ఇతర లోహాల అయాన్లతో కలిసి ఉంటాయి.
సిరామిక్ ఘనపదార్థాలు అకర్బన సమ్మేళనాలతో, సాధారణంగా రసాయన మూలకాల ఆక్సైడ్లతో, కూడి ఉంటాయి. [8] అవి రసాయనికంగా జడత్వం కలిగి, తరచుగా ఆమ్ల లేదా కాస్టిక్ వాతావరణంలో సంభవించే రసాయన కోతను తట్టుకోగలవు. సెరామిక్స్ సాధారణంగా 1000 నుండి 1600 °C వరకు అధిక ఉష్ణోగ్రతలను తట్టుకోగలవు. నైట్రైడ్లు, బోరైడ్లు, కార్బైడ్లు వంటి ఆక్సైడ్ కాని అకర్బన పదార్థాలు వీటికి మినహాయింపు.
కర్బన రసాయన శాస్త్రం కార్బన్, హైడ్రోజన్ ల రసాయన సమ్మేళనాల సంశ్లేషణ (లేదా ఇతర మార్గాల ద్వారా) నిర్మాణం, లక్షణాలు, కూర్పు, ప్రతిచర్యలు, తయారీని అధ్యయనం చేస్తుంది, ఇందులో నైట్రోజన్, ఆక్సిజన్, హాలోజన్లు - ఫ్లోరిన్, క్లోరిన్, బ్రోమిన్, అయోడిన్ - వంటి అనేక ఇతర మూలకాలు ఉండవచ్చు. కొన్ని సేంద్రీయ సమ్మేళనాల్లో భాస్వరం లేదా సల్ఫర్ మూలకాలు కూడా ఉండవచ్చు. సేంద్రీయ ఘనపదార్థాలకు ఉదాహరణలు కలప, పారాఫిన్ మైనపు, నాఫ్తలీన్, అనేక రకాల పాలిమర్లు, ప్లాస్టిక్లు .
మిశ్రమ పదార్థాల్లో రెండు లేదా అంతకంటే ఎక్కువ మాక్రోస్కోపిక్ దశలు ఉంటాయి. వాటిలో ఒకటి సిరామిక్.
మిశ్రమ పదార్థాల వినియోగాల్లో స్టీల్-రీన్ఫోర్స్డ్ కాంక్రీటు వంటి నిర్మాణ వస్తువుల నుండి, నాసా వారి స్పేస్ షటిల్లో వాడిన థర్మల్ ప్రొటెక్షన్ సిస్టమ్ వరకు ఉంటాయి. ఒక ఉదాహరణ రీన్ఫోర్స్డ్ కార్బన్-కార్బన్ (RCC), 1510 °C వరకు రీఎంట్రీ ఉష్ణోగ్రతలను తట్టుకునే లేత బూడిద పదార్థం. ఇది స్పేస్ షటిల్ ముక్కును, దాని రెక్కల ముందు అంచులనూ రక్షిస్తుంది. RCC అనేది గ్రాఫైట్ రేయాన్ క్లాత్తో తయారు చేయబడిన, ఫినోలిక్ రెసిన్తో కలిపిన లామినేటెడ్ మిశ్రమ పదార్థం. ఆటోక్లేవ్లో అధిక ఉష్ణోగ్రత వద్ద క్యూరింగ్ చేసిన తర్వాత, రెసిన్ను కార్బన్గా మార్చడానికి లామినేట్ పైరోలైజ్ చేస్తారు. వాక్యూమ్ చాంబర్లో ఫర్ఫ్యూరల్ ఆల్కహాల్తో కలిపి, ఫర్ఫ్యూరల్ ఆల్కహాల్ను కార్బన్గా మార్చడానికి క్యూర్డ్/పైరోలైజ్ చేస్తారు. పునర్వినియోగ సామర్థ్యం కోసం ఆక్సీకరణ నిరోధకతను అందించడానికి, RCC యొక్క బయటి పొరలను సిలికాన్ కార్బైడ్గా మారుస్తారు.
సెమీకండక్టర్లు లోహ విద్యుద్వాహకాలకు, అలోహ నిరోధకాలకూ మధ్యస్థంగా వాహకతను, నిరోధకతనూ కలిగి ఉండే పదార్థాలు. అవి ఆవర్తన పట్టికలో బోరాన్ నుండి కుడివైపుకి ఐమూలగా ఉండే మూలకాలు. అవి ఎడమవైపున ఉండే విద్యుత్ వాహకాలకు (లోహాలు) కుడివైపున ఉండే నిరోధకాలకూ మధ్య ఉంటాయి.
రేడియో, కంప్యూటర్లు, టెలిఫోన్లు మొదలైన వాటితో సహా ఆధునిక ఎలక్ట్రానిక్స్కు సెమీకండక్టర్ పదార్థాలతో తయారయ్యే పరికరాలే పునాది. సెమీకండక్టర్ పరికరాలలో ట్రాన్సిస్టర్, సౌర ఘటాలు, డయోడ్లు, ఇంటిగ్రేటెడ్ సర్క్యూట్లు ఉంటాయి. సౌర ఫోటోవోల్టాయిక్ ప్యానెళ్ళు కూడా పెద్ద సెమీకండక్టర్ పరికరాలే. ఇవి కాంతిని నేరుగా విద్యుత్ శక్తిగా మారుస్తాయి.
అనేక సాంప్రదాయిక ఘనపదార్థాలు నానోమీటర్ పరిమాణాలకు కుదించబడినప్పుడు విభిన్న లక్షణాలను ప్రదర్శిస్తాయి. ఉదాహరణకు, సాధారణంగా పసుపురంగులో ఉండే బంగారం, బూడిద రంగులో ఉండే సిలికాన్ల నానోపార్టికల్స్ ఎరుపు రంగులో ఉంటాయి; బంగారపు నానోపార్టికల్స్, బంగారు పలకల కంటే (1064 °C) చాలా తక్కువ ఉష్ణోగ్రతల వద్ద (2.5 nm పరిమాణంలో ఉండేవి ~300 °C వద్ద) కరుగుతాయి. [9] మెటాలిక్ నానోవైర్లు సంబంధిత బల్క్ లోహాల కంటే చాలా బలంగా ఉంటాయి. [10] [11] నానోపార్టికల్స్కు ఉండే అధిక ఉపరితల వైశాల్యం కారణంగా వాటిని శక్తి రంగంలో వాడతారు. ఉదాహరణకు, ప్లాటినం లోహాలు ఆటోమోటివ్ ఇంధనాల్లో ఉత్ప్రేరకాలు గాను, అలాగే ప్రోటాన్ ఎక్స్ఛేంజ్ మెమ్బ్రేన్ (PEM) ఇంధన ఘటాలుగానూ వాడతారు.అలాగే, లాంతనమ్, సిరియం, మాంగనీస్, నికెల్ యొక్క సిరామిక్ ఆక్సైడ్లు (లేదా సెర్మెట్లు) ఇప్పుడు ఘన ఆక్సైడ్ ఇంధన ఘటాలుగా (SOFC) అభివృద్ధి చేయబడుతున్నాయి. లిథియం అయాన్ బ్యాటరీలలో లిథియం, లిథియం-టైటనేట్, టాంటాలమ్ నానోపార్టికల్స్ లను వాడుతున్నారు. సిలికాన్ నానోపార్టికల్స్ వ్యాకోచ/సంకోచ చక్రం కారణంగా లిథియం అయాన్ బ్యాటరీల నిల్వ సామర్థ్యం నాటకీయంగా పెరుగుతుందని తేలింది. సిలికాన్ నానోవైర్ల వలన బ్యాటరీలలో నిల్వ బాగా పెరుగుతుంది. సిలికాన్ నానోపార్టికల్స్ కొత్త రకాల సౌరశక్తి కణాలలో కూడా ఉపయోగించబడుతున్నాయి.
మూలకాలు, సమ్మేళనాల భౌతిక లక్షణాలైన వాసన, రంగు, వాల్యూమ్, సాంద్రత, ద్రవీభవన స్థానం, మరిగే స్థానం, ఉష్ణ సామర్థ్యం, భౌతిక రూపం, గది ఉష్ణోగ్రత వద్ద ఆకారం (ఘన, ద్రవ లేదా వాయువు ; క్యూబిక్, త్రిభుజాకార స్ఫటికాలు, మొదలైనవి), కాఠిన్యం, సారంధ్రత, వక్రీభవన గుణకం వంటి అనేక ధర్మాలు వాటి రసాయన కూర్పు గురించి నిశ్చయాత్మకమైన సాక్ష్యాన్ని అందిస్తాయి. ఈ విభాగం ఘన పదార్థాల యొక్క కొన్ని భౌతిక లక్షణాలను చర్చిస్తుంది.
పదార్థాల యాంత్రిక లక్షణాలు వాటి బలాన్ని, వైకల్యానికి నిరోధకత వంటి లక్షణాలను వివరిస్తాయి. ఉదాహరణకు, ఉక్కు దూలాలను వాటి అధిక దార్ఢ్యత కారణంగా నిర్మాణంలో ఉపయోగిస్తారు. ఈ లక్షణం వలన వాటిపై లోడు పడినపుడు విరిగిపోవు లేదా గణనీయంగా వంగవు.
యాంత్రిక లక్షణాలలో స్థితిస్థాపకత, ప్లాస్టిసిటీ, తన్యత బలం, సంపీడన బలం, కోత బలం, ఫ్రాక్చర్ మొండితనం, డక్టిలిటీ (పెళుసుగా ఉండే పదార్థాలకు ఇది తక్కువగా ఉంటుంది), ఇండెంటేషన్ కాఠిన్యం వంటివి ఉన్నాయి. సాలిడ్ మెకానిక్స్ అనేది బాహ్య శక్తులు, ఉష్ణోగ్రత మార్పులు వంటి బాహ్య చర్యలలో ఘన పదార్థపు ప్రవర్తన యొక్క అధ్యయనం.
ద్రవాల లాగా ఘనపదార్థం స్థూల స్థితిలో ప్రవహించదు. దాని అసలు ఆకారం నుండి ఏ కొంచెం మారినా దాన్ని వైకల్యం అంటారు. అసలు పరిమాణానికి, వైకల్యానికీ ఉన్న నిష్పత్తిని స్ట్రెయిన్ అంటారు. పనిచేసే స్ట్రెస్ తగినంత తక్కువగా ఉంటే, దాదాపుగా ఘన పదార్థాలన్నీ ఒత్తిడికి నేరుగా అనులోమానుపాతంలో ఉండే విధంగా ప్రవర్తిస్తాయి (హుక్ నియమం). నిష్పత్తి యొక్క గుణకాన్ని మాడ్యులస్ ఆఫ్ ఎలాస్టిసిటీ లేదా యంగ్స్ మాడ్యులస్ అంటారు. వైకల్యం చెందే ఈ ప్రాంతాన్ని లీనియర్లీ ఎలాస్టిక్ రీజియన్ అంటారు. అనువర్తిత ఒత్తిడికి ఘనం ఎలా స్పందిస్తుందనే విషయాన్ని మూడు నమూనాలు వివరిస్తాయి:
ఘనపదార్థాలలో ఉష్ణ శక్తి ఉంటుంది కాబట్టి, వాటి పరమాణువులు ఒక క్రమ (లేదా అస్తవ్యస్తమైన) లాటిస్లో స్థిరంగా ఉండే సగటు స్థానాలలో కంపిస్తూంటాయి. స్ఫటికాకార లేదా గాజు నెట్వర్క్లోని లాటిస్ వైబ్రేషన్లు ఘనపదార్థాల గతి సిద్ధాంతానికి పునాది. ఈ చలనం పరమాణు స్థాయిలో సంభవిస్తుంది కాబట్టి, స్పెక్ట్రోస్కోపీలో ఉపయోగించే అత్యంత ప్రత్యేకమైన పరికరాలు లేకుండా వీటిని గమనించడం లేదా గుర్తించడం సాధ్యం కాదు.
ఘనపదార్థాల ఉష్ణ లక్షణాల్లో ఉష్ణ వాహకతను ఒకటి. ఇది ఉష్ణాన్ని మోసుకెళ్ళే సామర్థ్యాన్ని సూచించే పదార్థం ధర్మం. ఘనపదార్థాలకు ఒక నిర్దిష్ట ఉష్ణ సామర్థ్యం కూడా ఉంటుంది. ఇది వేడి రూపంలో శక్తిని నిల్వ చేసే పదార్థపు సామర్ధ్యం.
ఎలక్ట్రికల్ లక్షణాలలో విద్యుత్ నిరోధకత/వాహకతలు, విద్యుద్వాహక బలం, విద్యుదయస్కాంత పారగమ్యత, పర్మిటివిటీ ఉన్నాయి. లోహాలు, మిశ్రమలోహాలు వంటి ఎలక్ట్రికల్ కండక్టర్లూ, అద్దాలు, సిరామిక్స్ వంటి ఎలక్ట్రికల్ ఇన్సులేటర్లూ పరస్పర విరుద్ధంగా ఉంటాయి. సెమీకండక్టర్లు ఈ రెంటికీ మధ్య ఉంటాయి. లోహాలలో వాహకత ఎలక్ట్రాన్ల వల్ల కలుగుతుంది. ఎలక్ట్రాన్లు, రంధ్రాలు రెండూ సెమీకండక్టర్లలో ప్రవాహానికి దోహదం చేస్తాయి. ప్రత్యామ్నాయంగా, అయానిక్ కండక్టర్లలో అయాన్లు విద్యుత్ ప్రవాహానికి మద్దతు ఇస్తాయి.
అనేక పదార్థాలు కూడా తక్కువ ఉష్ణోగ్రతల వద్ద సూపర్ కండక్టివిటీని ప్రదర్శిస్తాయి; వాటిలో టిన్, అల్యూమినియం, వివిధ లోహ మిశ్రమాలు, కొన్ని భారీగా డోప్ చేయబడిన సెమీకండక్టర్లు, కొన్ని సెరామిక్స్ వంటి లోహ మూలకాలు ఉన్నాయి. చాలా విద్యుద్వాహకాల (మెటాలిక్) ఎలక్ట్రికల్ రెసిస్టివిటీ సాధారణంగా ఉష్ణోగ్రత తగ్గినప్పుడు క్రమంగా తగ్గుతుంది, కానీ ఆ తగ్గుదల ఒక పరిమితి లోనే ఉంటుంది. అయితే సూపర్ కండక్టర్లో, పదార్థం దాని క్రిటికల్ ఉష్ణోగ్రత కంటే తక్కువగా చల్లబడినప్పుడు దాని విద్యున్నిరోధం ఆకస్మికంగా సున్నాకి పడిపోతుంది. సూపర్ కండక్టింగ్ వైర్ యొక్క లూప్లో ప్రవహించే విద్యుత్ ప్రవాహం, శక్తి వనరే లేకుండా నిరవధికంగా కొనసాగుతూంటుంది.
ప్రయోగించిన యాంత్రిక స్ట్రెస్కు ప్రతిస్పందనగా వోల్టేజ్ను ఉత్పత్తి చేసే స్ఫటికాల సామర్ధ్యాన్ని పైజోఎలెక్ట్రిసిటీ అంటారు. పైజోఎలెక్ట్రిక్ స్ఫటికాలలో పైజోఎలెక్ట్రిక్ ప్రభావం రివర్సబుల్గా ఉంటుంది. అంటే అది వోల్టేజ్కు గురైనప్పుడు, చిన్న మొత్తంలో ఆకారాన్ని మార్చుకుంటుంది. రబ్బరు, ఉన్ని, వెంట్రుకలు, చెక్క ఫైబర్, పట్టు వంటి పాలిమర్ పదార్థాలు తరచుగా ఎలెక్ట్రెట్లుగా ప్రవర్తిస్తాయి. ఉదాహరణకు, పాలీవినైలిడిన్ ఫ్లోరైడ్ (PVDF) పాలిమర్, సాంప్రదాయిక పైజోఎలెక్ట్రిక్ మెటీరియలైన క్వార్ట్జ్ (స్ఫటికాకార SiO 2 ) కంటే అనేక రెట్లు ఎక్కువ పైజోఎలెక్ట్రిక్ ప్రతిస్పందనను ప్రదర్శిస్తుంది. వైకల్యం (~0.1%) అధిక-వోల్టేజ్ మూలాలు, లౌడ్స్పీకర్లు, లేజర్లు, అలాగే రసాయన, జీవ, ధ్వని-ఆప్టిక్ సెన్సార్లు, ట్రాన్స్డ్యూసర్ల వంటి ఉపయోగకరమైన సాంకేతిక అనువర్తనాలలో ఇది పనికివస్తుంది.
పదార్థాలు కనిపించే కాంతిని ప్రసారం చేస్తాయి (ఉదా గాజు) లేదా ప్రతిబింబిస్తాయి (ఉదా. లోహాలు).
అనేక పదార్థాలు కొన్ని తరంగదైర్ఘ్యాలను ప్రసారం చేసి, కొన్నిటిని నిరోధించవచ్చు. ఉదాహరణకు, విండో గ్లాస్ కనిపించే కాంతికి పారదర్శకంగా ఉంటుంది, కానీ సూర్యరశ్మికి కారణమయ్యే అతినీలలోహిత కాంతి యొక్క చాలా పౌనఃపున్యాలను ఆపుతుంది. ఈ లక్షణం వలన పౌనఃపున్యాలను బట్టి వడబోయవలసిన సందర్భాల్లో దీన్ని వాడతారు. దానిపై పడే కాంతి రంగును ఇది మార్చగలదు.
సౌర ఘటం లేదా ఫోటోవోల్టాయిక్ సెల్ అనేది కాంతి శక్తిని విద్యుత్ శక్తిగా మార్చే పరికరం. ప్రాథమికంగా, ఈ పరికరం కేవలం రెండు విధులను మాత్రమే నెరవేర్చాలి: కాంతి-శోషక పదార్థంలో ఛార్జ్ క్యారియర్ల (ఎలక్ట్రాన్లు, రంధ్రాలు) ఫోటో-జనరేషన్, విద్యుత్తును ప్రసారం చేసే వాహక పరిచయానికి ఛార్జ్ క్యారియర్లను వేరు చేయడం (సరళంగా చెప్పాలంటే, బాహ్య సర్క్యూట్లోకి లోహం ద్వారా ఎలక్ట్రాన్లను మోసుకెళ్లడం). ఈ మార్పిడిని ఫోటోఎలెక్ట్రిక్ ఎఫెక్ట్ అని పిలుస్తారు. సౌర ఘటాలకు సంబంధించిన పరిశోధనా రంగాన్ని ఫోటోవోల్టాయిక్స్ అంటారు.
సౌర ఘటాలను అనేక చోట్ల వాడతారు. రిమోట్ ఏరియా పవర్ సిస్టమ్స్, భుమి చుట్టూ పరిభ్రమించే ఉపగ్రహాలు, అంతరిక్ష నౌకలు, చేతి కాలిక్యులేటర్లు, రిస్ట్ వాచీలు, రిమోట్ రేడియోటెలిఫోన్లు, వాటర్ పంపింగ్ అప్లికేషన్లు వంటి వాటిలో గ్రిడ్ నుండి విద్యుత్ శక్తి అందుబాటులో లేని పరిస్థితులలో ఇవి చాలా కాలంగా ఉపయోగపడుతున్నాయి. ఇటీవల, వీటిని ఇన్వర్టర్ ద్వారా విద్యుత్ గ్రిడ్కు అనుసంధానించబడిన సోలార్ మాడ్యూల్స్ (ఫోటోవోల్టాయిక్ శ్రేణులు) లో ఉపయోగిస్తున్నారు. ఇక్కడ ఇవి ఏకైక సరఫరాగా కాకుండా అదనపు విద్యుత్ వనరుగా పని చేస్తాయి.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.