From Wikipedia, the free encyclopedia
மீளும் தசமங்கள் (Repeating Decimal அல்லது Recurring Decimal) எனப்படுவது விகிதமுறு எண்களை தசம எண்களாக எழுதும் ஒரு வகையாகும். இவ்வெண்களில் ஏதேனுமொரு தசம தானத்திலிருந்து இன்னுமொரு தசம தானம் வரை ஒரே எண் (பூச்சியம் தவிர) அல்லது எண் கூட்டங்கள் மீண்டும் மீண்டும் இடம்பெறும். மீளும் எண் பூச்சியமாக இருந்தால் அந்தப் பதின்ம எண் ஒரு முடிவுறு பதின்ம எண்ணாகும். ஏனெனில் கடைசியாக நீளும் பூச்சியங்களுக்கு மதிப்பு கிடையாது என்பதால் மீளும் பூச்சியத்தை எழுதாமல் விட்டுவிடலாம், இப்பூச்சியத்துக்கு முன்பாக பதின்மம் முடிவு பெற்றுவிடும்.[1]
மீண்டும் மீண்டும் இடம்பெறும் எண் அல்லது எண் கூட்டங்களை இவ்வாறு (.....) இடுவதன் மூலம் எடுத்துக்காட்டலாம்.
உதாரணம்:
ஒவ்வொரு முடிவுறு பதின்ம எண்ணையும் பதின்ம பின்னமாக எழுதலாம். அவ்வாறு எழுதப்படும் பின்னத்தின் பகுதி பத்தின் அடுக்காக இருக்கும். எடுத்துக்காட்டாக, 1.585 = 15851000.
ஒரு முடிவுறு பதின்ம எண்ணை k2n5m விகித வடிவிலும் எழுதலாம். எடுத்துக்காட்டாக, 1.585 = 3172352.
முடிவுறு தசம வடிவங்கொண்ட ஒவ்வொரு எண்ணையும் 9 ஐ மீளும் எண்ணாகக் கொண்ட மீளும் தசமமாக எழுதமுடியும்:
இரு முழு எண்களின் விகிதமாக எழுத முடியாத எண்கள் விகிதமுறா எண்கள் என அழைக்கப்படுகின்றன. விகிதமுறா எண்களின் தசம வடிவங்கள் முடிவுறா, மீளா வடிவானவை. √2, π இரண்டும் விகிதமுறா எண்கள்.
மீளும் தசமங்களின் குறியீடு நாட்டுக்குநாடு வேறுபடுகிறது. உலகம் முழுமைக்கும் ஒரேவிதமான குறியீடு கடைபிடிக்கப்படவில்லை. அமெரிக்காவில், மீளும் தசமங்களின் மீளும் எண் அல்லது எண்கூட்டத்தின் மீது ஒரு தொகுப்புக்கோடு வரையப்படுகிறது. (). ஐக்கிய இராச்சியம் மற்றும் சீனாவிலும் மீளும் எண் மீது அல்லது எண்கூட்டத்தின் இரு ஓர எண்களின் மீதும் புள்ளியிட்டுக் குறிக்கப்படுகிறது. ().
ஐரோப்பாவில் கடைபிடிக்கப்படும் மற்றொரு குறியீடு மீளும் எண்களை அடைப்புக்குறிக்குள் குறிப்பதாகும். (). மீளும் தசமங்களின் மீளும் எண்ணிற்குப் பிறகு எச்சப் புள்ளிகள் (...) இடுவதன் மூலமும் குறிக்கலாம். ஆனால் இம்முறை தெளிவானதாகாது. இக்குறியீட்டில் எந்த எண்கள் மீள்கின்றன என்பது தெளிவில்லை; 3.14159… போன்ற விகிதமுறா எண்களுக்கும் இக்குறியீடு பயன்படுத்தப்படுவதால் மீள்கை உள்ளதா இல்லையா என்பதும் தெளிவில்லை.
பின்னம் | எச்சம் | தொகுப்புக்கோடு | புள்ளிகள் | அடைப்புக்குறி |
---|---|---|---|---|
1/9 | 0.111… | 0.1 | 0.(1) | |
1/3 | 0.333… | 0.3 | 0.(3) | |
2/3 | 0.666… | 0.6 | 0.(6) | |
9/11 | 0.8181… | 0.81 | 0.(81) | |
7/12 | 0.58333… | 0.583 | 0.58(3) | |
1/81 | 0.012345679… | 0.012345679 | 0.(012345679) | |
22/7 | 3.142857142857… | 3.142857 | 3.(142857) |
ஒரு விகிதமுறு எண்ணை தசமவடிவிற்கு மாற்றுவதற்கு நெடுமுறை வகுத்தல் பயன்படுத்தப்படுகிறது.
எடுத்துக்காட்டு: 5/74
. . 0.0675 74 ) 5.00000 4.44 560 518 420 370 500
ஒவ்வொரு படிநிலையிலும் 56, 42, 50 என மீதி கிடைத்துள்ளது. மீதி 50 கிடைத்த நிலையில் பூச்சியத்தைக் கீழிறக்க, மீண்டும் கணக்கு 500 ஐ 74 ஆல் வகுப்பதாகிறது. எனவே 5/74 இன் தசம வடிவில் 675 என்ற தொகுப்பு மீளும் எண்கூட்டமாக அமையும்.
தரப்பட்ட ஒரு மீளும் தசமத்தை அதன் மூல பின்னமாக மாற்றலாம்.
எடுத்துக்காட்டு 1:
(இருபுறமும் 10 ஆல் பெருக்க) | ||
(இரண்டாவதிலிருந்து முதல் வரியைக் கழிக்க) | ||
(எளிய உறுப்புகளுக்குச் சுருக்க) |
எடுத்துக்காட்டு 2:
(தசமப்புள்ளியை சுழற்சி துவக்கத்துக்கு நகர்த்தல் = ஒரு இடம் தள்ளி நகர்த்தல் = 10 ஆல் பெருக்குதல்) | ||
(சுழலும் ஒரு தொகுதியை முழுஎண் பகுதிக்கு நகர்த்த 100 ஆல் பெருக்கல்) | ||
(தசமப் பகுதி நீங்கும் வகையில் கழித்தல்) | ||
(எளிய உறுப்புகளுக்குச் சுருக்கல்) |
ஒரு மீளும் தசமத்தின் n இலக்கங்கள் கொண்ட மீளும் எண்கூட்டம், இறுதி இலக்கத்தை 1 ஆகவும் மற்ற இலக்கங்களைப் பூச்சியமாகவும் கொண்டிருந்தால் கீழ்வரும் சுருக்குவழியைப் பயன்படுத்தி அம்மீளும் தசமத்தை பின்னவடிவிற்கு மாற்றலாம்.
எடுத்துக்காட்டு 1:
எனவே இவ்விதமான மீளும் தசமங்களின் பின்னவடிவைக் கணக்கிடாமலேயே,
எடுத்துக்காட்டு 2:
தசம புள்ளிக்கு அடுத்ததாக n காலமுறை நீளமுடைய மீளும் எண்கூட்டம் கொண்ட மீளும் தசமத்தின் பின்னவடிவின் பொது வாய்ப்பாடு:
மீளும் தசமத்தின் மதிப்பு 0 - 1 ஆகவும் மீளும் எண்கூட்டத்தின் நீளம் n இலக்கங்களாகவும், மீளும் எண்கூட்டம் தசம புள்ளிக்கு அடுத்தும் இருந்தால், அம்மீளும் தசமத்தின் பின்னவடிவின் தொகுதி மீளும் எண்கூட்டத்தில் இலக்கங்களால் ஆனதாகவும் பகுதி 9 ஆல் ஆன n இலக்க எண்ணாகவும் இருக்கும்.
எடுத்துக்காட்டுகள்:
மீளும் தசமத்தின் மதிப்பு 0 - 1 ஆகவும் மீளும் எண்கூட்டத்தின் நீளம் n இலக்கங்களாகவும், மீளும் எண்கூட்டத்துக்கும் தசம புள்ளிக்கும் இடையே k இலக்க எண்ணிக்கையில் 0 அமைந்திருக்குமானால், அம்மீளும் தசமத்தின் பின்னவடிவின் தொகுதி மீளும் எண்கூட்டத்தில் இலக்கங்களால் ஆனதாகவும் பகுதி 9 ஆல் ஆன n இலக்க எண்ணுடன் k இலக்க எண்ணிக்கையில் பூச்சியங்களைச் சேர்த்துக்கொள்ள வேண்டும்.
மேற்கூறிய வடிவிலமையாத ஒரு மீளும் தசமத்தை முடிவுறு தசமம் மற்றும் மீளும் தசமத்தின் கூடுதலாக எழுதிக்கொண்ட பின்னர் அதனை பின்னவடிவிற்கு மாற்றலாம்.
எடுத்துக்காட்டுகள்:
ஒரு மீளும் தசமத்தை முடிவுறாத் தொடராக எழுதலாம். அதாவது ஒரு மீளும் தசமத்தை முடிவுறா எண்ணைக்கையிலான விகிதமுறா எண்களின் கூட்டலாக எழுதலாம்.
இது ஒரு பெருக்குத் தொடர். முதல் உறுப்பு a = 1/10; பொதுவிகிதம் r = 1/10. மேலும் பொதுவிகிதத்தின் தனி மதிப்பு < 1. எனவே இம்முடிவுறா பெருக்குத்தொடரின் கூட்டுத்தொகை:
2 அல்லது 5 தவிர்த்த (10 இன் சார்பகா முழுஎண்கள் தவிர்த்த) மற்ற பகாஎண்களைப் பகுதியாகக் கொண்ட சுருக்கவியலாப் பின்னம் எப்பொழுதும் ஒரு மீளும் தசமத்தைத் தரும். 1/p இன் காலமுறை நீளம் k ஆனது மாடுலோ p இன் கீழ் 10 இன் பெருக்கல் வரிசையாக இருக்கும் (10k ≡ 1 (சமானம், மாடுலோ p)). p இன் ஏது மூலம் 10 எனில் மீளும் எண்கூட்டத்தின் நீளம் p − 1 ஆகவும், p இன் ஏது மூலமாக 10 இல்லையெனில் பெர்மாவின் சிறிய தேற்ற முடிவின்படி, மீளும் எண்கூட்டத்தின் நீளம் p − 1 இன் காரணியாக இருக்கும்.
பத்தடிமானத்தில் 5 ஐ விடப் பெரியதான எந்தவொரு பகாஎண்ணின் பெருக்கல் தலைகீழியின் மீளும் தசமத்தின் மீளும் எண்கூட்டம் 9 ஆல் வகுபடும்.[4]
பகாஎண் p இன் தலைகீழி 1/p இன் மீளும் தசமத்தின் காலமுறை நீளம் p − 1 எனில், முழுஎண்ணாக எழுதப்படும் அதன் மீளும் எண்கூட்டம் சுழல் எண் எனப்படும்.
எடுத்துக்காட்டுகள்:
இப்பட்டியலை நீட்டித்து 1/109, 1/113, 1/131, 1/149, 1/167, 1/179, 1/181, 1/193,... பின்னங்களையும் சேர்க்கலாம் (OEIS-இல் வரிசை A001913) .
ஒரு சுழல் எண்ணின் தகு மடங்கும் ஒரு சுழற்சியாகும்.
1⁄7 இன் நீள்வகுத்தலின் மூலம் சுழல்தன்மையின் காரணத்தை அறிந்து கொள்ளலாம். இவ்வகுத்தலில் மீளும் மீதங்கள்: {1, 3, 2, 6, 4, 5}.
சுழலெண்களைப் பிறப்பிக்காத பகாஎண் தலைகீழிகள்:
பின்னம் | மதிப்பு | காலமுறை நீளம் | பின்னம் | மதிப்பு | காலமுறை நீளம் | பின்னம் | மதிப்பு | காலமுறை நீளம் |
1/2 | 0.5 | 0 | 1/17 | 0.0588235294117647 | 16 | 1/32 | 0.03125 | 0 |
1/3 | 0.3 | 1 | 1/18 | 0.05 | 1 | 1/33 | 0.03 | 2 |
1/4 | 0.25 | 0 | 1/19 | 0.052631578947368421 | 18 | 1/34 | 0.02941176470588235 | 16 |
1/5 | 0.2 | 0 | 1/20 | 0.05 | 0 | 1/35 | 0.0285714 | 6 |
1/6 | 0.16 | 1 | 1/21 | 0.047619 | 6 | 1/36 | 0.027 | 1 |
1/7 | 0.142857 | 6 | 1/22 | 0.045 | 2 | 1/37 | 0.027 | 3 |
1/8 | 0.125 | 0 | 1/23 | 0.0434782608695652173913 | 22 | 1/38 | 0.0263157894736842105 | 18 |
1/9 | 0.1 | 1 | 1/24 | 0.0416 | 1 | 1/39 | 0.025641 | 6 |
1/10 | 0.1 | 0 | 1/25 | 0.04 | 0 | 1/40 | 0.025 | 0 |
1/11 | 0.09 | 2 | 1/26 | 0.0384615 | 6 | 1/41 | 0.02439 | 5 |
1/12 | 0.083 | 1 | 1/27 | 0.037 | 3 | 1/42 | 0.0238095 | 6 |
1/13 | 0.076923 | 6 | 1/28 | 0.03571428 | 6 | 1/43 | 0.023255813953488372093 | 21 |
1/14 | 0.0714285 | 6 | 1/29 | 0.0344827586206896551724137931 | 28 | 1/44 | 0.0227 | 2 |
1/15 | 0.06 | 1 | 1/30 | 0.03 | 1 | 1/45 | 0.02 | 1 |
1/16 | 0.0625 | 0 | 1/31 | 0.032258064516129 | 15 | 1/46 | 0.02173913043478260869565 | 22 |
1/n இன் காலமுறை நீளம்
1/n இன் மீளும் பகுதி
1/(nவது பகாஎண்) இன் காலமுறை நீளம்
Seamless Wikipedia browsing. On steroids.