From Wikipedia, the free encyclopedia
திசையன் வெளி (Vector Space) என்பது கணித அமைப்புகளில் முக்கியமான ஒன்று. கணிதத்தில் மட்டுமின்றி மற்ற துறைகளிலும் கணக்கற்ற சூழ்நிலைகளில் இவ்வமைப்பு காணப்படுகிறது. சாதாரண முப்பரிமாண வடிவியலில் படிமங்கள் மூலம் உருவகப்படுத்தப்பட்ட பற்பல சூழ்நிலைகள், திசையன் வெளி என்ற கருத்துச் செறிவினால், உறவில்லாததாகத் தோன்றும் பல இதரப் பிரிவுகளிலும் பயன்பாடுகளிலும் இன்றியமையாததாகத் தேவைப் படுவதே திசையன் வெளியின் முக்கியத்துவத்துக்கு சான்று. எடுத்துக் காட்டிற்காக சிற்சில துறைகளைக் குறிப்பிடலாம்: Electrical Engineering, Quantum Mechanics, Linear Programming, Mathematical Statistics.
ஒரு வெற்றில்லாத கணம் V ஒரு மெய்த்திசையன் வெளி அல்லது மெய் நேரியல் திசையன் வெளி என்று சொல்லப்பட வேண்டுமென்றால் கீழ்க்கண்ட மூன்று நிபந்தனைகள் உறுதிப்படவேண்டும்:
(தி.வெ.1) V இல் 'கூட்டல்' என்ற ஒரு ஈருறுப்புச்செயல்முறை வரையறுக்கப் பட்டிருக்க வேண்டும்.
(தி.வெ.2) V இல் 'அளவெண் பெருக்கல்' என்று சொல்லப்பட்ட ஒரு செயல்முறை வரையறுக்கப்பட்டிருக்கவேண்டும். இதன் பொருள்: ஒவ்வொரு மெய்யெண் வுக்கும், மற்றும் V இலுள்ள ஒவ்வொரு உறுப்பு u க்கும், ஒரு உறுப்பை V இல் சுட்டிக்காட்டி அதற்கு என்று பெயர் கொடுக்கப்பட்டிருக்க வேண்டும்.
(தி.வெ.3) கூட்டலும் அளவெண் பெருக்கலும் கீழ்க்கண்டவாறு இருக்கவேண்டும்:
(a) கூட்டலுக்கு V ஒரு பரிமாற்றுக் குலம். அதாவது பரிமாற்றுக்குலத்தின் G1, G2, G3, G4, G5 என்ற ஐந்து விதிகளுக்கும் உட்படவேண்டும்.
(b) என்ற எந்த மெய்யெண்களுக்கும், மற்றும் V இலுள்ள u, v என்ற எந்த உறுப்புகளுக்கும்,
(c) என்ற எந்த மெய்யெண்களுக்கும், மற்றும் V இலுள்ள எல்லா u க்கும்,
(d) V இலுள்ள எல்லா u க்கும்,
மெய்த்திசையன் வெளியின் இலக்கணத்தில் மெய்யெண்களுக்குப்பதில் சிக்கலெண்களை பயன்படுத்தினால் அது சிக்கற்திசையன் வெளி எனப்படும்.
அளவெண்களாகப் பயன்படுத்தப்படும் மெய்யெண்களுக்கோ அல்லது சிக்கலெண்களுக்கோ அளவெண்கள் என்று பெயர்.
இவ்வளவெண்கள் மெய்யெண்களாகவோ, சிக்கலெண்களாகவோ தான் இருக்கவேண்டிய அவசியமில்லை. வேறு ஏதாவது ஒரு களம் ஆகவும் இருக்கலாம். அதை திசையன்வெளியின் குறியீட்டில் காட்டவேண்டுமானால், V ஐ என்று குறித்துக் காட்டலாம்.
Vn என்னும் கணத்தை எடுத்துக்கொள்வோம் இதன் உறுப்புகள் ஒவ்வொன்றும் ஐப்போல் ஒரு n-ஆய-வரிசை.இவ்வாயங்கள் அளவெண்களிலிருந்து வரும். இரு ஆயவரிசையைக்கூட்ட, ஆயவாரியாகக்கூட்டவேண்டும். அதாவது
+ = .
இதே மாதிரி, ஒரு ஆய-வரிசையை அளவெண்ணால் பெருக்க, ஆயவாரியாக ப்பெருக்கவேண்டும்: அதாவது
இவ்விதம் கூட்டலையும் அளவெண் பெருக்கலையும் வரையறுத்துக்கொண்டால், Vn ஒரு மெய்த்திசையன் வெளி ஆவதற்கு நாம் (தி.வெ.3)நிபந்தனை இங்கு சரிசெய்யப்படுகிறதா என்று பார்த்தால் போதும்.
இவ்விதம் நிறுவப்பட்ட Vn n-ஆய-வரிசைகளின் மெய்த்திசையன் வெளி எனப்பெயர் பெறும்.
V1 திசையன் வெளியாகக் கருதப்பட்ட சாதாரண மெய்யெண்களின் வெளி. இதனில் அளவெண்களும் மெய்யெண்கள். வெளியின் உறுப்புகளும் மெய்யெண்கள்.
V2 இன் உறுப்புகள் xy-தளத்தின் திசையன்கள். xy-தளத்தில் உள்ள வடிவியல் திசையன்களை க்கூட்டுவதும், அவைகளை அளவெண்பெருக்குவதும், ஆயவரிசைத் திசையன் வெளியில் நாம் வரையறுத்த கூட்டல், அளவெண்பெருக்கல் இவைகளும் ஒன்றுதான்.
V3 யும் அப்படித்தான். இதற்கு முப்பரிமாண ஆயவரிசைத்திசையன் வெளி எனப்பெயர்.
Vn ஐ இரண்டுவிதமாக எடுத்துக்கொள்ளலாம். உறுப்புக்களின் ஆயங்கள் என்ற மெய்யெண்களத்திலிருந்து வந்தால் அதை
என்றும்
அவை என்ற சிக்கலெண்களத்திலிருந்து வந்தால் அதை
என்றும் குறிப்போம்.
க்கு அளவெண்கள் மெய்யெண்களாக இருக்கவேண்டும்.
ஒவ்வொரு திசையன் வெளியிலும் கூட்டலமைப்பில் ஒரு முற்றொருமை இருந்தாக வேண்டும். அதை சூன்யத்திசையன் (zero vector) என்றோ அல்லது திசையன் வெளியின் சூன்ய உறுப்பு என்றோ சொல்லலாம். அதற்குக்குறியீடு '0' என்றே சொல்லலாம். ஆனால் அளவெண்களிலுள்ள '0' வுடன் குழப்பம் வரும் வாய்ப்பிருந்தால் அதை '' என்று குறிக்கவேண்டியிருக்கும். கீழ்க்கண்ட முற்றொருமைச்சமன்பாடுகள் எல்லா திசையன் வெளிகளிலும் உண்மை:
1. எந்த அளவெண் க்கும்,
2. V இலுள்ள எந்த u க்கும்,
3. V இலுள்ள எந்த u க்கும், (-1) u = -u
சார்புத்திசையன் வெளிகள் சில:
1.: மூடிய இடைவெளி [a,b]இல் வரையறுக்கப்பட்ட மெய்யெண் மதிப்புள்ள எல்லாச்சார்புகள். இரண்டு சார்புகளின் கூட்டலும் அளவெண் பெருக்கலும் புள்ளிவாரியாகச்செய்யப்படும்; அ-து,
ஒவ்வொரு க்கும் ;
ஒவ்வொரு அளவெண் வுக்கும், ஒவ்வொரு சார்பு f க்கும், ஒவ்வொரு க்கும்
இதே முறையில் கீழேயுள்ள சார்பு வெளிகளிலும் கூட்டலும் அளவெண் பெருக்கலும் வரையறுக்கப்பட்டதாகக் கொள்ள வேண்டும்.
2.: மூடிய இடைவெளி [a,b]இல் வரையறுக்கப்பட்ட மெய்யெண் மதிப்புள்ள எல்லாப் பல்லுறுப்புச் சார்புகளும். இந்த வெளியில் ஒரு மாதிரி உறுப்பு p என்றால், ஒவ்வொரு க்கும்
3. : மூடிய இடைவெளி [a,b]இல் வரையறுக்கப்பட்ட மெய்யெண் மதிப்புள்ள எல்லாத் தொடர் சார்புகள்.
4. : மூடிய இடைவெளி [a,b]இல் வரையறுக்கப்பட்டு,முதல் வகையீடுகள் தொடர்சார்புகளாகவுள்ள , மெய்யெண் மதிப்புள்ள எல்லா சார்புகளும்.
5. : மூடிய இடைவெளி [a,b]இல் வரையறுக்கப்பட்டு,n வகையீடுகள் தொடர்சார்புகளாகவுள்ள , மெய்யெண் மதிப்புள்ள எல்லா சார்புகளும்.
6. : மூடிய இடைவெளி [a,b]இல் வரையறுக்கப்பட்டு,எல்லா வகையீடுகளும் உள்ள , மெய்யெண் மதிப்புள்ள எல்லா சார்புகளும்.
அவசியமிருந்தால் இவைகளை, , , , , : என்றும் எழுதவேண்டியிருக்கும்.
7. மேலுள்ள ஆறிலும் க்கு பதில் ஐப்பயன்படுத்தினால், சிக்கல் எண் மதிப்புள்ள சார்புகளின் திசையன் வெளிகள் கிடைக்கும்.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.