Remove ads
From Wikipedia, the free encyclopedia
எதிர்மின்னிகளை அல்லது இலத்திரன்களை (எலெக்ட்ரான்) ஒளிக்கற்றை போல இயக்கி ஒரு நுண்நோக்கியாகப் பயன்படுவதால் இது எதிர்மின்னி நுண்ணோக்கி அல்லது இலத்திரன் நுண்நோக்கி (இலங்கை வழக்கு: இலத்திரன் நுணுக்குக்காட்டி) எனப்படுகின்றது. இது நுண்ணிய பொருட்களை அதிக நுண்தேர்திறனுடன் (resolving power) பெரிதாக்கிக் காட்டவல்லது. இது நுண்ணளவு உள்ள ஓரு பொருளை 500,000 மடங்கு அளவுக்குப் பெரிதாக்கும் திறன் கொண்டது.
ஏர்ணஸ்ட் ருஸ்கா (Ernst Ruska) என்னும் செருமானிய இயற்பியலாளர் முதன்முதலாக இலத்திரன் நுண்நோக்கியொன்றை உருவாக்கினார். எதிர்மின்னி அலை இயல்புகளையும் கொண்டிருப்பதன் காரணமாக, அதை ஒளியைப் பயன்படுத்துவது போலக் கையாள முடியும் என அவர் நம்பினார். காந்தப்புலத்தைப் பயன்படுத்தி எதிர்மின்னிகளைக் கட்டுப்படுத்திச் (குவியச்செய்து) செயற்படவைக்க முடியும் என அறிந்திருந்த ஏர்ணஸ்ட், ஒளியைக் கண்ணாடி வில்லைகளைப் பயன்படுத்திக் குவியச் செய்வதுபோல், காந்தப் புலத்தைப் பயன்படுத்தி எதிர்மின்னி அலைகளைக் குவிக்க முடியும் என உணர்ந்தார். அலை நீளம் குறையும் போது, பெரிதாக்கும் திறன் அதிகரிக்கும் என்பதால், குறைந்த அலை நீளம் கொண்ட எதிர்மின்னி (இலத்திரன்) அலைகளைப் பயன்படுத்துவதன் மூலம் சாதாரண ஒளியியல் நுண்நோக்கிகளைவிட மிக அதிகமான உருப்பெருக்கத்தைப் பெறமுடியும் என அவருக்குப் புலப்பட்டது. 1933 ஆம் ஆண்டில் மாக்ஃசு நொல் என்னும் இன்னொரு இயற்பியலாளருடன் சேர்ந்து திருத்தமற்ற இலத்திரன் நுண்நோக்கியொன்றை உருவாக்கினார். நடைமுறைத் தேவைகளுக்குப் பொருத்தமானதாக இது இல்லாதிருந்தாலும், இதன்மூலம் 400 மடங்கு உருப்பெருக்கத்தைப் பெறமுடிந்தது. இக்கண்டுபிடிப்புக்காக ருஸ்காவுக்கு 1986 ஆம் ஆண்டுக்கான நோபல் பரிசு வழங்கப்பட்டது.
முதலாவது நடைமுறையில் பயன்படுத்தப்படக்கூடிய எதிர்மின்னி நுண்நோக்கி எலி பிராங்க்ளின் பர்ட்டன் (Eli Franklin Burton) மற்றும் அவரது மாணவர்களான சிசில் ஆல் (Cecil Hall), சேம்சு இல்லியர் (James Hillier), அல்பர்ட் பிறிபசு (Albert Prebus) என்பவர்களால் கனடாவிலுள்ள ரொராண்டோ பல்கலைக் கழகத்தில் 1938 ஆம் ஆண்டில் உருவாக்கப்பட்டது.
தற்கால எதிர்மின்னி(இலத்திரன்) நுண்நோக்கிகள் 20 இலட்சம் மடங்குவரை கூட உருப்பெருக்கும் திறன் கொண்டவையாக இருப்பினும், அவை இன்னும் ருஸ்காவின் மாதிரியின் அடிப்படையிலேயே இயங்குகின்றன. இன்றைய காலகட்டத்தில் இலத்திரன் நுண்நோக்கிகள் முன்னணி ஆய்வகங்களிலும், பல்கலைக்காழக ஆய்வுச் சாலைகளிலும் பரவலாகக் காணப்படுகின்றது. இந் நுண்நோக்கிகள், நுண்ணுயிர்கள், உயிரணுக்கள் (கலம்) போன்ற உயிரியற் பொருட்களை ஆராயவும், உலோகவியல், படிகக் கட்டமைப்புக்கள் போன்றவற்றில் ஆய்வு செய்யவும் பெரிதும் பயன்படுகின்றன.
ஊடுருவு = Transmission [1]
ஊடுருவு எதிர்மின்னி நுண்ணோக்கிகளில், எதிர்மின்வாய்களில் அல்லது எலக்ட்ரான் துப்பாக்கியில் இருந்து கதிர்வீசப்படும் (உமிழப்படும்) இலத்திரன் கற்றைகள் உயர் மின்னழுத்தத்தால் முடுக்குவிக்கப்பட்டு பின்னர் காந்தவில்லைகளினால் (மின் காந்த லென்சுகளினால்) குவிக்கப்படுகின்றன.
பருப்பொருள்களின் அலைப்பண்பு இதில் பயன்படுத்தப்படுகிறது;[2] அடிப்படையில் ஒளி நுண்ணோக்கியை ஒத்துள்ள ஊடுருவு எலக்ட்ரான் நுண்ணோக்கியில் ஒளிக்கற்றைக்கு பதிலாக எலக்ட்ரான் கற்றை பயன்படுத்தப்படுகிறது. ஒளியின் அலைநீளம் அதிகம் (~ 600 nm அதாவது 600 நேனோமீட்டர்), எனவே ஒளி நுண்ணோக்கியால் நாம் காணும் பொருள்களில் பகுதிறன் (Resolving power)[3] குறைவாக இருக்கும். முடுக்கப்பட்ட எலக்ட்ரான் கற்றையின் அலைநீளம் குறைவு (~ 6 pm அதாவது 6 பைகோமீட்டர்; எனவே ஒளியை விடவும் 1 இலட்சம் மடங்கு குறைவு). எனவே, பகுதிறன் ~ 1 இலட்சம் மடங்கு அதிகமாக இருக்கும்.[4]
இவை படங்களாகப் பதிவு செய்யப்படுகின்றன;[6]
கற்றைகளாகச் செலுத்தப்படும் இலத்திரன்களை (முதல்நிலை இலத்திரன்கள்) உணர்தலை அடிப்படையாகக் கொண்ட செலுத்தல்முறை இலத்திரன் நுண்நோக்கிகளைப் போலன்றி, துருவுமுறை இலத்திரன் நுண்நோக்கிகள், செலுத்தப்படும் இலத்திரன் கற்றைகளினால் அருட்டப்பட்டு, மேற்பரப்புகள் வெளியேற்றும் இலத்திரன்களை (துணைநிலை இலத்திரன்கள்) உணர்வதன்மூலம் அவற்றின் உருப்பெருக்கப்பட்ட படிமங்களை உருவாக்குகின்றன.
துருவல் செலுத்தல்முறை இலத்திரன் நுண்நோக்கி (Scanning Transmission Electron Microscope
தெறிப்புமுறை இலத்திரன் நுண்நோக்கி
இக்கருவியில், ஒளிக் கதிர்களுக்குப் பதில் எலக்ட்ரான் கற்றையினையும் வில்லைகளுக்குப் பதில் மின், காந்தப் புலங்களும் பயன் படுத்தப் படுகின்றன.மிகவும் மெல்லிய தகடு போன்ற ஆராயப்பட வேண்டிய பொருளின் மேல் எலக்ட்ரான் கற்றை விழுமாறு செய்து, அடர்த்திக் கூடிய பகுதியினால் தோன்றும் நிழல் உடனொளிர் திரையில் பெறப்படுகிறது. உருப்பெருக்கம் 100 000 வரையிலிருக்கும். இக்கருவி உலோகவியல், உயிரியல், வேதியியல் போன்ற துறைகளில் பெரிதும் பயன்படுகின்றது.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.