Remove ads
Från Wikipedia, den fria encyklopedin
En liealgebra (namngiven efter Sophus Lie) är ett vektorrum tillsammans med en icke-associativ multiplikation kallad lieparentes (på engelska Lie bracket)[1][2] som skrivs . När en algebraisk produkt är definierad på vektorrummet, är lieparentesen kommutatorn .
Liealgebrans största användningsområde är studiet av geometriska objekt såsom liegrupper och differentierbara mångfalder. Begreppet "liealgebra" infördes av Hermann Weyl under 1930-talet. I äldre texter används begreppet infinitesimal grupp.
En liealgebra är en algebra över en kropp; den är ett vektorrum g över någon kropp K tillsammans med en binär operation [·, ·] : g × g → , som kallas lieparentes, vilken uppfyller villkoren
En liealgebra med villkor (2) utbytt mot antisymmetri kallas för en kvasiliealgebra.
Observera också att multiplikationen som ges av lieparentesen inte i allmänhet är associativ, det vill säga, behöver inte vara lika med . Därför är liealgebror inte ringar eller associativa ringar i den vanliga meningen.
Ett konkret exempel på en liealgebra är med vektorprodukt som parentesoperation. Även algebran av n×n-matriser är en liealgebra med kommutatoroperationen som parentesoperation. Mer allmänt gäller att varje associativ algebra blir en liealgebra under kommutatoroperationen.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.