From Wikipedia, the free encyclopedia
U matematici, tablica množenja je matematička tabela koja se koristi za definisanje operacije množenja za algebarski sistem.
Tabela decimalnog množenja tradicionalno se uči kao bitan deo elementarne aritmetike širom sveta, jer postavlja osnovu za aritmetičke operacije sa brojevima baze deset. Mnogi prosvetni radnici smatraju da je potrebno memorisati tabelu do 9 × 9.[1]
Najstarije poznate tablice množenja koristili su Vavilonci pre oko 4000 godina.[2] Međutim, oni su koristili bazu od 60.[2] Najstarije poznate tablice sa bazom od 10 su kineske decimalne tablice množenja na bambusovim trakama koje datiraju iz oko 305. godine pne, tokom perioda kineskih zaraćenih država.[2]
Tabela množenja se ponekad pripisuje drevnom grčkom matematičaru Pitagori (570–495 pne). Na mnogim jezicima se i naziva Pitagorina tabela (na primer francuski, italijanski i ruski), ponekad i na engleskom.[4] Grčko-rimski matematičar Nikomak (60–120 godine), sledbenik neopitagoreizma, uključio je tablicu množenja u svoj Uvod u aritmetiku, dok je najstarija preživela grčka tablica množenja na voštanoj tablici iz 1. veka nove ere i trenutno je smeštena u Britanskom muzeju.[5]
Godine 493, Viktorijus od Akvitanije napisao je tablicu množenja sa 98-kolona, koja je dala (u rimskim brojevima) proizvod svih brojeva od 2 do 50 i redovi su bili „spisak brojeva koji počinju sa jednom hiljadom, spuštajući se za po stotinu do sto, zatim se spuštajući za po deset do deset, zatim za po jedan do jedan, a zatim frakcije do 1/144.”[6]
U njegovoj knjizi iz 1820. godine s naslovom Filozofija aritmetike,[7] matematičar Džon Lesli objavio je tablicu množenja do 99 × 99, koja omogućava da se brojevi množe u parovima cifara odjednom. Lesli je takođe preporučio mladim učenicima da zapamte tablicu množenja do 50 × 50. Ilustracija ispod prikazuje tablicu do 12 × 12, što je veličina koja se obično koristi u školama.
× | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
2 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 |
3 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30 | 33 | 36 |
4 | 4 | 8 | 12 | 16 | 20 | 24 | 28 | 32 | 36 | 40 | 44 | 48 |
5 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 |
6 | 6 | 12 | 18 | 24 | 30 | 36 | 42 | 48 | 54 | 60 | 66 | 72 |
7 | 7 | 14 | 21 | 28 | 35 | 42 | 49 | 56 | 63 | 70 | 77 | 84 |
8 | 8 | 16 | 24 | 32 | 40 | 48 | 56 | 64 | 72 | 80 | 88 | 96 |
9 | 9 | 18 | 27 | 36 | 45 | 54 | 63 | 72 | 81 | 90 | 99 | 108 |
10 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 110 | 120 |
11 | 11 | 22 | 33 | 44 | 55 | 66 | 77 | 88 | 99 | 110 | 121 | 132 |
12 | 12 | 24 | 36 | 48 | 60 | 72 | 84 | 96 | 108 | 120 | 132 | 144 |
Tradicionalno učenje množenja zasnovano je na memorisanju stubaca u tabeli, u obliku kao što je
1 × 10 = 10
2 × 10 = 20
3 × 10 = 30
4 × 10 = 40
5 × 10 = 50
6 × 10 = 60
7 × 10 = 70
8 × 10 = 80
9 × 10 = 90
Oblik pisanja tablice množenja u stubcima s potpunim brojem rečenica još se koristi u nekim zemljama.
U tablici množenja postoji obrazac koji može da pomogne da se lakše zapamti tablica. On koristi sledeće cifre:
→ | → | |||||||||
↑ | 1 | 2 | 3 | ↓ | ↑ | 2 | 4 | ↓ | ||
---|---|---|---|---|---|---|---|---|---|---|
4 | 5 | 6 | ||||||||
7 | 8 | 9 | 6 | 8 | ||||||
← | ← | |||||||||
0 | 5 | 0 | ||||||||
Slika 1: Neparni | Slika 2: Parni |
Slika 1 se koristi za umnoške od 1, 3, 7, i 9. Slika 2 se koristi za umnoške od 2, 4, 6, i 8. Ovi se obrasci mogu koristiti za pamćenje umnožaka bilo kog broja od 0 do 10, osim 5. Kao što bi se započelo sa brojem koji se množi, kada se množi sa 0, ostaje se na 0 (0 je spoljna, tako da strelice nemaju efekta na 0, inače nula je korištena kao veza za kreiranje trajnog ciklusa). Obrazac takođe funkcioniše sa umnošcima od 10, počevši od 1 i jednostavno dodajući 0, daje 10, a zatim se svaki broj u obrascu primeni na desetičnu jedinicu, kao što bi se to obično činilo sa jediničnom jedinicom.
Na primer, da bi se zapamtili svi proizvodi od 7:
Tabele takođe mogu da definišu binarne operacije na grupama, poljima, prstenima i drugim algebarskim sistemima. U takvim se kontekstima one se mogu nazvati Kejlejovim tabelama. Ovo su tabele sabiranja i množenja za konačno polje .
Za svaki prirodni broj , postoje tabele sabiranja i množenja za prsten .
|
|
Za druge primere, pogledajte grupu, i oktonion.
Kineska tablica množenja sastoji se od osamdeset i jedne rečenice sa četiri ili pet kineskih znakova po rečenici, što deci olakšava učenje napamet. Kraća verzija tabele sastoji se od samo četrdeset i pet rečenica, jer su pojmovi kao što su „devet osmica daje sedamdeset dva” identični sa „osam devetki daje sedamdeset dva”, tako da se ne moraju dva puta učiti.[8] Ona se često naziva devet-devet tabela ili jednostavno devet-devet, jer je u davnim vremenima devet-devet tabela počinjala sa 9×9[9]: devet devetki daje osamdeset jedan, osam devetki daje sedamdeset dva ... sedam devetki daje šezdeset tri, itd. dve jedinice daju jedan. Prema mišljenju poznatog naučnika Vang Guoveja, devet-devet tabela je verovatno počinjala sa devet zbog „obožavanja devetke” u drevnoj Kini; car se u Knjizi promena smatrao „devet-pet nadmoćnim”.
Svežan od 21 bambusne trake datirane na 305 pne tokom perioda zaraćenih država u kolekciji Đinghua bambusnih traka (清华简) predstavlja najstariji poznati primer na svetu decimalne tablice množenja.[10]
Godine 1989, Nacionalno veće nastavnika matematike (engl. ) razvilo je nove standarde koji su se zasnivali na uverenju da bi svi studenti trebalo da nauče veštine razmišljanja višeg reda, te je preporučeno da se smanji naglasak na učenju tradicionalnih metoda koje su se oslanjale na učenje napamet, poput tablica množenja. Široko usvojeni tekstovi kao što su Istraživanja o brojevima, podacima i svemiru (šire poznati kao TERC prema njihovom sastavljaču, Tehničkim obrazovnim istraživačkim centrima (engl. )) izostavili su pomagala poput tablica množenja u ranim izdanjima. NCTM je u svojim fokalnim tačkama iz 2006. godine jasno stavio do znanja da se moraju naučiti osnovne matematičke činjenice, mada ne postoji konsenzus o tome da li je učenje napamet najbolja metoda.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.