Remove ads
Електромагнетно зрачење таласне дужине од 10 pm до 10nm. From Wikipedia, the free encyclopedia
Рендгенски зраци или -зраци (икс зраци) су део електромагнетског спектра са фреквенцијама од 3×1016 до 3×1019 херца, односно таласних дужина им је реда 0,1 до 10 нанометра (0,1×10−9 до 1×10−8 m). Зраци су јонизујући и због велике енергије користе се у радиологији (у медицини), као и у кристалографији за одређивање структуре кристала. Рендгенски зраци су добили име по свом проналазачу Вилхему Конраду Рендгену, који их је открио. Данас се често користи и назив икс зраци, како их је Рендген назвао.[1]
Овај чланак можда захтева чишћење и/или прерађивање како би се задовољили стандарди квалитета Википедије. |
Рендгенски зраци спадају у јонизујуће зрачење, што значи да су наелектрисани и електромагнетски активни. Користе се у разним областима за испитивање структура. Позната је њихова примена у медицини за добијање слике костију и зуба, јер пролазе кроз ткива не апсорбујући се у њима. Свака слика настала коришћењем рендгенског зрака настаје услед различитог апсорбовања (упијања) зрачења у различитим структурама или деловима тела. Густа структура, као што је кост, апсорбује висок проценат рендгенског зрака (која се на слици коју добијемо представља као светло сива), док структуре мале густине, попут меких ткива, апсорбују мали проценат зрачења и на добијеном снимку имају тамно сиву боју. Многобројни делови људског тела имају различите густине и та разлика ствара рендгенску слику. [2]Због своје велике енергије зраци су продорни и уз већу дозу могу да оштете ткива.
X-зрачење се добија у вакуумским цевима за електрично пражњење када сноп високоенергетских електрона произведених на катоди интерагује са анодом. Електрони су убрзани напонима од 10.000 до 100.000 волти, а кочењем на аноди електрони као наелектрисане честице емитују електромагнетно зрачење високих енергија познато као X-зрачење.[3]
Цеви у којима се производе X-зраци називају се рендгенске цеви. Рендгенска цев је најчешће дужине око 20–25 cm и пречника око 15 cm. Она је кључни део апарата за рендгенско зрачење. Из цеви је уклоњен ваздух и притисак је 510 милибара. Катода је негативна електрода, прави се од материјала са високом тачком топљења. Да би површина са које се електрони емитују била што већа — катоде се модификују у спиралу. Новији уређаји имају две спирале. Постављена је унутар челичног оквира који је на негативном напону. Анода је позитивна и налази се насупрот катоде. Најчешће је направљена у облику је диска који се ротира. Оклоп цеви састављен је из 2 слоја који чине изолациони материјали и олово. Олово је ту због заштите пацијента и лекара и због заштите самог уређаја од механичких оштећења. За добијање задовољавајуће слике битна су три параметра: анодни напон, анодна струја и време експозиције. Фокус може бити електрични, реални или оптички, тј. пројекција реалног.
У високовакумској диоди, катода се индиректно греје па постоји термоелектронска емисија. Електрони се из катоде једносмерним пулсирајућим напоном усмеравају ка аноди, ударају у аноду, долази до интеракције упадних електрона са електронима електронског омотача, чији је резултат емисија електромагнетних таласа. Место на аноди у које ударају електрони назива се „фокус“ и веома је малих димензија, а од његових димензија зависи оштрина рендгенског снимка. Због ослобађања топлоте у сударном процесу долази до грејања аноде којој је стално потребно хлађење те се у том циљу користе обртне аноде угаоне брзине око 8500 обр/мин.
При проласку X-зрака кроз неку супстанцу, долази до више типова интеракција између зрака и медијума. Интеракције се могу огледати у следећим ефектима:
До њега долази ако је енергија упадних електрона много већа од енергије која је потребна за електроне да круже по истој путањи. Зависи од укупног броја електрона у атому материје на коју зрак наилази. Мења се таласна дужина и ослобађа се квант енергије.
Таласна дужина се не мења, али се путања мало мења, зависи од врсте ткива на које пада зрачење.
Упадни зраци интерагују са електронима атома аноде и предају им топлотну енергију. Фотоефектом се објашњава апсорпција X-зрака (икс зрака). Последице су настанак карактеристичних зрачења, стварање позитивног и негативног јона.
Дешава се када се фотони огромних енергија нађу у близини језгра.
Супротан процес од стварања електронског пара, долази до промене структуре атома. За овај вид интеракције електромагнетног зрачења и материје неопходно је да енергија фотона X-зрака буде већа од енергије нуклеарних сила које делују на честице тако да се оне задржавају у језгру. У зависности од честица које су избачене из језгра, могу настати јони, нестабилна језгра или потпуно нови елементи.
Рендгенска слика је визуелна, црно-бела манифестација на рендгенском филму конусне пројекције тела на једној равни, настала сумацијом свих слојева кроз које су прошли рендгенски зраци.[4] Рендгенски филм са рендгенском сликом називамо рендгенограм.
Са фотографског аспекта, рендгенска слика на рендгенограму представља негативне слике каква се види на екрану. Оно што се на рендгенограму види као бело, на екрану се види као црно и обратно. У том смислу разликујемо светлину и расветљење и сенку и засенчење.
Под појмом светлина подразумева се визуелна манифестација на екрану извесне природе рендгентранспарентне средине (нпр. трахеја, плућа и сл.) док под изразом расветљење подразумевамо визуелну манифестацију на екрану какве патолошке рендгентранспарентне средине. Слично вази и за изразе сенка и засенчење при чему за се под изразом засенчење подразумева визуелна манифестација на екрану каквог патолошког супстрата кои појачано апсорбује X-зраке па се манифестује у виду сенке.
Према интензитету распознајемо: сенке интензитета меких ткива-најслабијих интензитета[4] (мишићи, паренхиматозни органи и др.)
Настанак рендгенске слике подложан је законима оптике одн. централне или конусне пројекције и законима апсорпције. Наиме, рендгенски зрачни сноп по изласку из цеви кроз округли отвор тубуса или четвртасти отвор визир-тубуса има у простору аспект купе или пирамиде са врхом на тубусу. Средишна линија зрачног снопа од врха купе или пирамиде назива се централним знаком (ЦЗ). Рендгенски зраци се простиру радијално и праволинијски. Са тог аспекта рендгенска слика би требало да буде аналогна светлосној слици. Међутим, при интерпретацији рендгенске слике морају се имати у виду три битна својства по којима се разликују од светлосне слике:
Рендгенска слика је феномен слојева.[5] Рендгенска слика настаје феноменом апсорпције по правилима пројекције свих слојева озраченог објекта који су били на путу снопа X-зракова. Рендгенски зрачни сноп који се користи у дијагностици сачињавају X-зраци хетерогених таласних дужина. Човечије тело је нехомогеног састава. Неколико је битних фактора који одређују пројекцију рендгенографираног објекта, тј. величину, облик, положај, контуру и тамнину слике. То су:
Изнећемо поједине одлуке рендгенске слике са аспекта рендгенгеометрије укључујући и правила пројекције.
На величину слике утиче и величина фокуса цеви.
Тамнина слике (опацитет). Слика треба да има оптималну тамнину. Тамнина ће бити јача ако је објекат ближи равни пројекције (тј. филму или екрану) ако је вредност mAs већа, ако је густина објекта већа, ако је атомски састав рендгенографираног објекта више просечне вредности атомских бројева и, најзад, ако је дебљина рендгенографираног објекта већа.
Оштрина слике. Под оштрином слике подразумевамо приказ квалитета периферне контуре сенке. Сенка може да има јасно о оштро оцртане периферне контуре,па кажемо да је слика оштра, или пак да су јој контуре неоштре, када говоримо о неоштрини.Слика је квалитетнија уколико је оштра. За слику кажемо да је оштра када се на осветљеном развијеном рендгенограму линија види као линија, а не као пруга или с тачка види као тачка а не као мрља.
Различиту могућност да разликује ситне, дискретне детаље, која се назива раздвојна моћ. Раздвојна моћ рендгенограма (то исто важи и за друге системе)изражава се дебљином црте која се јасно види или, прецизније, бројем парних линија на једном сантиметру дужину (pl/cm). Јединица за раздвојну моћ рендгенограма назива се линија оштрине. На оштрину слике утиче још и низ фактора:
Када слика није оштра говоримо о неоштринама. Неоштрине могу бити условљене различитим узроцима.
Разлика између максималне светлине и максималне тамнине на једном рендгенограму чини контрастну ширину. На контраст рендгенске слике утичу:напон струје цеви, зрачни продукт (mAs), дебљина и густина рендгенографираног објекта. Контраст рендгенске слике директно је сразмеран производу трећег степена таласне дужине X-зракова, првог степена зрачног продукта (mAs. првог степена дебљине и првог степена густине рендгенографираног објекта. Да би се на рендгенограму уочио контраст, услов је да у два суседна ткива или органа постоји разлика у степену апсорпције. Разликујемо позитивна рендгенска контрастна средства (јод, баријум) која повећаном апсорпцијом на рендгенограму дају сенку, и негативна рендгенска контраст на средства (ваздух, CO2, O2), која као гас због мање густине ai релативно ниских атомских бројева на рендгенограму дају транспаренцију. И једна и друга на рендгенограму знатно истичу контраст. Рендгенографирани објекат на филму или екрану увек се приказује пројекционо увећаним[4] (дивергентни ток снопа X-зракова).
Под пројекционим ефектом подразумевамо пројектовање делова тела или органа на филму или екрану при експозицији X-зрацима у одређеним условима. Лако их је разумети ако имамо у виду следеће три чињенице: 1) да је рендгенска слика појединих делова нашег тела слика нехомогеног тела. 2) да је рендгенска слика конусна пројекција тела из једне тачке и назад. 3) да је рендгенска слика на конвенционалном рендгенограму сумација свих сенки и расветљења насталих при проласку снопа X-зракова кроз све рендгенографиране слојеве објекта. Постоји ефекат сумације, ефекат покривања, ефекат бљештања, и тангенцијални ефекат.
При интерпретацији рендгенске слике доносе се закључак и мишљење и поставља дијагноза. Саопштава се писаним документом-извештајем, писаћом машином. То треба да чине квалификоване особе. Рендгенограм поред бројних вредности, има и документарну вредност. При приступању интерпретацији рендгенограма у принципу треба испоштовати три ствари:
Страна филма обележава се ознаком односно словима D или R што значи десно од речи droite (франц.) или necht (нем.), односно right (енг.) или за леву страну пацијента велико слово L што значи лево од речи left (енг.), links (нем.) Власништво филма, време када је филм учињен и институција у којој је филм сачињен, односно у којој је пацијент прегледан подаци су који се по правилу морају наћи сигнирани на филму тушем, фломастером или најбоље да су пресликани.
Време експозиције филма после датог контраста у минутима или/и часовима, нпр. при урографији, како би се пратили врме излучивање контраста уротрактом, редослед учињених рендгенограма[4] и др.
Интерпретација рендгенограма, као интерпретација рендгенске слике са екрана, садржи три дела:
Мишљење, закључак, односно дијагноза. То је трећи и последњи део при интерпретацији рендгенограма.Закључак представља кратак резиме свега учињеног и регистрованог у налазу. Истовремено, пожељно је навести и предлог за евентуално пожељно и могуће даље претраживање посебно ако је реч о којем рендгенском или радиолошком прегледу.[4]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.